Center for Hormonforstyrrende Stoffer

Litteraturgennemgang for perioden 1. april – 30. juni 2012

Indhold

Humane studier ved Afd. for Vækst og Reproduktion, Rigshospitalet	2
Udvalgte publikationer	3
Bruttoliste	6
In vitro studier ved DTU-FOOD	19
Udvalgte publikationer	19
Bruttoliste	20
In Vivo studier ved DTU - FOOD	24
Udvalgte publikationer:	24
Bruttoliste	26
Wildlife studier ved Biologisk Institut, Syddansk Universitet (SDU)	31
Udvalgte publikationer	31
Bruttoliste	33

Humane studier ved Afd. for Vækst og Reproduktion, Rigshospitalet

Søgning er udført på PubMed og dækker perioden 1. april – 30. juni 2012

Følgende søgeprofil er benyttet: Bisphenol A

Phthalat* Paraben*

(perfluor* OR polyfluor*)

Triclocarban Triclosan

(Flame retardant)

tributyltin

kombineret med nedenstående tekst:

AND expos* AND (human OR men OR women OR child* OR adult* OR adolescen* OR infan*)

Limits: title/abstract, English language

Som det fremgår af bruttolisten for humane studier, er der ganske mange hits i denne omgang. Derfor vil der også være relevante artikler, der ikke er blevet kommenteret. De udvalgte artikler omhandler BPA, PFOA, phthalater, parabener og paracetamol. God læselyst.

Udvalgte publikationer

Occup Environ Med. 2012 May 31. [Epub ahead of print]

Perfluorooctanoic acid exposure is associated with elevated homocysteine and hypertension in US adults

Min JY, Lee KJ, Park JB, Min KB.

Institute of Health and Environment, Seoul National University, Seoul, Republic of Korea.

Objective: To investigate the association between serum perfluorooctanoic acid (PFOA) concentration and cardiovascular disease, as measured by homocysteine level and blood pressure in a representative sample of US adults.

Methods: A cross-sectional study of 2934 adults (≥20 years) who participated in the 2003-2004 and 2005-2006 National Health and Nutrition Examination Survey and had detectable levels of PFOA in their serum. The health effects analysed as potentially associated with PFOA exposure included homocysteine level and blood pressure.

Results: The geometric mean value (95% CI) of the study participants' serum PFOA concentration was 4.00 μ g/I (95% CI 3.86 to 4.13). The homocysteine and systolic blood pressure were shown to increase significantly with an increase in the log-transformed serum PFOA concentration, after adjusting for potential confounding variables. Adjusted ORs comparing participants at the 80th versus the 20th percentiles were 2.62 for hypertension (95% CI 2.09 to 3.14), and a positive association was also evident in models based on quartiles or based on restricted cubic splines. Conclusion: These findings suggest that background exposure to PFOA may continue a risk factor for the development of cardiovascular diseases.

ASN Neuro. 2012 May 30;4(4).

Di-(2-ethylhexyl) phthalate and autism spectrum disorders

Testa C, Nuti F, Hayek J, De Felice C, Chelli M, Rovero P, Latini G, Papini AM Child Neuropsychiatry Unit, University Hospital AOUS of Siena, Siena, Italy

ASDs (autism spectrum disorders) are a complex group of neurodevelopment disorders, still poorly understood, steadily rising in frequency and treatment refractory. Extensive research has been so far unable to explain the aetiology of this condition, whereas a growing body of evidence suggests the involvement of environmental factors. Phthalates, given their extensive use and their persistence, are ubiquitous environmental contaminants. They are EDs (endocrine disruptors) suspected to interfere with neurodevelopment. Therefore they represent interesting candidate risk factors for ASD pathogenesis. The aim of this study was to evaluate the levels of the primary and secondary metabolites of DEHP [di-(2-ethylhexyl) phthalate] in children with ASD. A total of 48 children with ASD (male: 36, female: 12; mean age: 11±5 years) and age- and sex-comparable 45 HCs (healthy controls; male: 25, female: 20; mean age: 12±5 years) were enrolled. A diagnostic methodology, based on the determination of urinary concentrations of DEHP metabolites by HPLC-ESI-MS (HPLC electrospray ionization MS), was applied to urine spot samples. MEHP [mono-(2ethylhexenyl) 1,2-benzenedicarboxylate], 6-OH-MEHP [mono-(2-ethyl-6-hydroxyhexyl) 1,2-benzenedicarboxylate], 5-OH-MEHP [mono-(2-ethyl-5-hydroxyhexyl)1,2-benzenedicarboxylate] and 5-oxo-MEHP [mono-(2-ethyl-5-oxohexyl)1,2-benzenedicarboxylate] were measured and compared with unequivocally characterized, pure synthetic compounds (>98%) taken as standard. In ASD patients, significant increase in 5-OH-MEHP (52.1%, median 0.18) and 5-oxo-MEHP (46.0%, median 0.096) urinary concentrations were detected, with a significant positive correlation between 5-OH-MEHP and 5-oxo-MEHP (rs=0.668, P<0.0001). The fully oxidized form 5-oxo-MEHP showed 91.1% specificity in identifying patients with ASDs. Our findings demonstrate for the first time an association between phthalates exposure and ASDs, thus suggesting a previously unrecognized role for these ubiquitous environmental contaminants in the pathogenesis of autism.

Environ Health Perspect. 2012 Apr 27. [Epub ahead of print] **Prenatal Bisphenol A Exposure and Child Behavior in an Inner City Cohort** *Perera F, Vishnevetsky J, Herbstman JB, Calafat AM, Xiong W, Rauh V, Wang S*Columbia University

Background: Experimental laboratory evidence suggests that bisphenol A (BPA), an endocrine disruptor, is a neurodevelopmental toxicant. However, there have been limited and inconclusive results with respect to sex-specific BPA effects on child behavior. Objectives: We examined the association between prenatal BPA exposure and child behavior, adjusting for postnatal BPA exposure, and hypothesizing sex-specific effects.

Methods: We followed African-American and

Dominican women and their children from pregnancy to age 5 years, collecting spot urine samples from the mothers during pregnancy (34 weeks on average) and from children between 3-4 years to estimate BPA exposure. We assessed child behavior between 3-5 years using the Child Behavior Checklist (CBCL) and used generalized linear models to test the association between BPA exposure and child behavior, adjusting for potential confounders.

Results: The analysis was conducted on 198 children (87 boys and 111 girls). Among boys, high prenatal BPA exposure highest quartile versus the lowest three quartiles) was associated with significantly higher CBCL scores (more problems) on Emotionally Reactive (1.62 times greater, 95% CI 1.13-2.32) and Aggressive Behavior syndromes (1.29 times greater, 95% CI 1.09, 1.53). Among girls, higher exposure was associated with lower scores on all syndromes, reaching statistical significance for Anxious/Depressed (0.75 times as high, 95% CI 0.57, 0.99) and Aggressive Behavior (0.82 times as high, 95% CI 0.70, 0.97).

Conclusion: These results suggest that prenatal exposure to BPA may affect child behavior, and differently among boys and girls.

Environ Int. 2012 Aug;43:21-8. Epub 2012 Mar 30.

4-Nonylphenol and bisphenol A in Swedish food and exposure in Swedish nursing women *Gyllenhammar I, Glynn A, Darnerud PO, Lignell S, van Delft R, Aune M* National Food Agency, P.O. Box 622, 75126 Uppsala, Sweden. irina.gyllenhammar@slv.se

4-Nonylphenol (NP) and bisphenol A (BPA) are phenolic substances used in high volumes by the industry. Studies on cells and in experimental animals have shown that both these compounds can be classified as estrogenic hormone disrupters. Information about the exposure of humans to NP and BPA is still scarce, especially regarding levels in human blood. The first aim of this study was to investigate possible sources of NP and BPA exposure from food, by analyzing the levels of NP and BPA from a Swedish food market basket, based on the Swedish per capita food consumption. A second aim was to investigate blood serum levels of NP and BPA, as well as NP-ethoxylates, among young women in Sweden (n=100). Moreover, associations between food consumption and blood NP and BPA levels were studied. In food, NP was to some extent found at levels above limit of quantification (LOQ 20 ng/g fresh weight) in fruits, cereal products, vegetables, and potatoes. BPA levels above LOQ (2 ng/g fresh weight) were found in fish, meats, potatoes, and dairy products. The estimated mean intakes per capita were (medium bound) 27 µg NP/day and 3.9 µg BPA/day, showing that food is a source of BPA and NP in the general Swedish population. In blood serum, free NP above limit of detection (LOD 0.5 ng/g) was detected in 46% of the study participants while detectable levels of total NP (LOD 0.8 ng/g) were observed in 43%. The corresponding percentages for BPA were 25% and 22%, respectively. The results indicate that there is a continuous source of exposure to NP and BPA that is high enough for free NP and BPA to be detected in some consumers. Among the participants with quantifiable levels of free and total NP (n=38), 85% (median, range: 38-112%) of the NP was present as free NP. For BPA 76% (49-109%) was detected as free BPA (n=15). All women had levels of ethoxylates of NP below LOD

(0.1-0.7 ng/g). A significantly higher total consumption of fruits and vegetables was reported in questionnaires by participants with NP levels at or above LOD than among women with levels below LOD. This result is supporting the market basket results of relatively high NP levels in these types of food.

Hum Reprod. 2012 Apr;27(4):1191-201. Epub 2012 Feb 2.

Intrauterine exposure to mild analgesics during pregnancy and the occurrence of cryptorchidism and hypospadia in the offspring: the Generation R Study Snijder CA, Kortenkamp A, Steegers EA, Jaddoe VW, Hofman A, Hass U, Burdorf A The Generation R Study Group, Erasmus University Medical Centre, Dr. Molewaterplein 50-60, 3015 GE Rotterdam, The Netherlands.

BACKGROUND: Recently, over-the-counter mild analgesic use during pregnancy has been suggested to influence the risk of reproductive disorders in the offspring. We examined the influence of maternal exposure to mild analgesics during pregnancy on the occurrence of cryptorchidism and hypospadia in their offspring.

METHODS: Associations between maternal exposure to mild analgesics during pregnancy and cryptorchidism or hypospadia in the offspring were studied in 3184 women participating in a large population-based prospective birth cohort study from early pregnancy onwards in the Netherlands (2002-2006), the Generation R Study. Cryptorchidism and hypospadia were identified during routine screening assessments performed in child health care centres by trained physicians. The use of mild analysesics was assessed in three prenatal questionnaires in pregnancy, resulting in four periods of use, namely, periconception period, first 14 weeks of gestation, 14-22 weeks of gestation and 20-32 weeks of gestation. Logistic regression analyses were used to study the associations between maternal exposure to mild analgesics and cryptorchidism and hypospadia. RESULTS: The cumulative prevalence over 30 months of follow up was 2.1% for cryptorchidism and 0.7% for hypospadia. Use of mild analgesics in the second period of pregnancy (14-22 weeks) increased the risk of congenital cryptorchidism [adjusted odds ratio (OR) 2.12: 95% confidence interval (CI) 1.17-3.83], primarily due to the use of acetaminophen (paracetamol) (adjusted OR 1.89; 95% CI 1.01-3.51). Among mothers of cryptorchid sons, 33.8% reported (23 of 68) the use of mild analgesics during pregnancy, compared with 31.8% (7 of 22) of mothers with a boy with hypospadia and 29.9% (926 of 3094) of mothers with healthy boys.

CONCLUSIONS: Our results suggest that intrauterine exposure to mild analgesics, primarily paracetamol, during the period in pregnancy when male sexual differentiation takes place, increases the risk of cryptorchidism.

J Allergy Clin Immunol. 2012 Jun 14. [Epub ahead of print]

Urinary levels of triclosan and parabens are associated with aeroallergen and food sensitization

Savage JH, Matsui EC, Wood RA, Keet CA.

Johns Hopkins Division of Allergy and Clinical Immunology, Baltimore, Md.

BACKGROUND: Endocrine-disrupting compounds (EDCs) have immune-modulating effects. We were interested in determining their association with allergic sensitization.

OBJECTIVE: We sought to determine the association between EDCs and allergic sensitization and whether this relationship depends on the antimicrobial properties of the EDCs, sex, or both.

METHODS: Data were obtained from the 2005-2006 National Health and Nutrition Examination Survey in which urinary bisphenol A; triclosan; benzophenone-3; propyl, methyl, butyl, and ethyl parabens; and specific IgE levels were available for 860 children. Aeroallergen and food sensitizations were defined as having at least 1 positive (≥0.35 kU/L) specific IgE level to an

aeroallergen or a food. Logistic regression was used to determine the association of EDCs and sensitization. Analyses were adjusted for urinary creatinine level, age, sex, ethnicity, and poverty index ratio.

RESULTS: The odds of aeroallergen sensitization significantly increased with the level of the antimicrobial EDCs triclosan and propyl and butyl parabens ($P \le .04$). The odds of food sensitization significantly increased with the level of urinary triclosan among male subjects (odds ratio for third vs first tertiles, 3.9; P = .02 for trend). There was a significant interaction between sex and triclosan level, with male subjects being more likely to be food sensitized with exposure (P = .03). Similar associations were not identified for the nonantimicrobial EDCs bisphenol A and benzophenone-3 (P > .2).

CONCLUSIONS: As a group, EDCs are not associated with allergen sensitization. However, levels of the antimicrobial EDCs triclosan and parabens were significantly associated with allergic sensitization. The potential role of antimicrobial EDCs in allergic disease warrants further study because they are commonly used in Western society.

Bruttoliste

Bisphenol A

- 1: Martina CA, Weiss B, Swan SH. Lifestyle behaviors associated with exposures to endocrine disruptors. Neurotoxicology. 2012 Jun 21. [Epub ahead of print]
- 2: Wu S, Wei X, Jiang J, Shang L, Hao W. Effects of bisphenol A on the proliferation and cell cycle of HBL-100 cells. Food Chem Toxicol. 2012 Jun 23. [Epub ahead of print]
- 3: Pant J, Deshpande SB. Acute toxicity of bisphenol A in rats. Indian J Exp Biol. 2012 Jun;50(6):425-9.
- 4: Doshi T, D'Souza C, Dighe V, Vanage G. Effect of neonatal exposure on male rats to bisphenol a on the expression of DNA methylation machinery in the postimplantation embryo. J Biochem Mol Toxicol. 2012 Jun 21. doi: 10.1002/jbt.21425. [Epub ahead of print]
- 5: Vincent-Hubert F, Revel M, Garric J. DNA strand breaks detected in embryos of the adult snails, Potamopyrgus antipodarum, and in neonates exposed to genotoxic chemicals. Aquat Toxicol. 2012 May 22;122-123C:1-8. [Epub ahead of print]
- 6: Liu S, Qin F, Wang H, Wu T, Zhang Y, Zheng Y, Li M, Wang Z. Effects of 17α -ethinylestradiol and bisphenol A on steroidogenic messenger ribonucleic acid levels in the rare minnow gonads. Aquat Toxicol. 2012 Jun 2;122-123C:19-27. [Epub ahead of print]
- 7: Wolstenholme JT, Edwards M, Shetty SR, Gatewood JD, Taylor JA, Rissman EF, Connelly JJ. Gestational Exposure to Bisphenol A Produces Transgenerational Changes in Behaviors and Gene Expression. Endocrinology. 2012 Jun 15. [Epub aheadof print]
- 8: Savage JH, Matsui EC, Wood RA, Keet CA. Urinary levels of triclosan and parabens are associated with aeroallergen and food sensitization. J Allergy Clin Immunol. 2012 Jun 14. [Epub ahead of print]
- 9: Zhang XF, Zhang LJ, Feng YN, Chen B, Feng YM, Liang GJ, Li L, Shen W. Bisphenol A exposure modifies DNA methylation of imprint genes in mouse fetal germ cells. Mol Biol Rep. 2012 Jun 15. [Epub ahead of print]

- 10: Bulzomi P, Bolli A, Galluzzo P, Acconcia F, Ascenzi P, Marino M. The naringenin-induced proapoptotic effect in breast cancer cell lines holds out against a high bisphenol a background. IUBMB Life. 2012 Jun 12. doi: 10.1002/iub.1049. [Epub ahead of print]
- 11: Andra SS, Makris KC. Thyroid disrupting chemicals in plastic additives and thyroid health. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev. 2012 Apr;30(2):107-51.
- 12: Kasper-Sonnenberg M, Wittsiepe J, Koch HM, Fromme H, Wilhelm M. Determination of bisphenol a in urine from mother-child pairs-results from the duisburg birth cohort study, Germany. J Toxicol Environ Health A. 2012 Apr 15;75(8-10):429-37.
- 13: Cao XL, Zhang J, Goodyer CG, Hayward S, Cooke GM, Curran IH. Bisphenol A in human placental and fetal liver tissues collected from Greater Montreal area (Quebec) during 1998-2008. Chemosphere. 2012 Jun 7. [Epub ahead of print]
- 14: Sokolosky ML, Wargovich MJ. Homeostatic imbalance and colon cancer: the dynamic epigenetic interplay of inflammation, environmental toxins, and chemopreventive plant compounds. Front Oncol. 2012;2:57.
- 15: Roy A, Bauer SM, Lawrence BP. Developmental exposure to bisphenol a modulates innate but not adaptive immune responses to influenza a virus infection. PLoS One. 2012;7(6):e38448.
- 16: Christensen KL, Lorber M, Koch HM, Kolossa-Gehring M, Morgan MK. Population variability of phthalate metabolites and bisphenol A concentrations in spot urine samples versus 24- or 48-h collections. J Expo Sci Environ Epidemiol. 2012 Jun 6. doi: 10.1038/jes.2012.52. [Epub ahead of print]
- 17: Meeker JD. Exposure to Environmental Endocrine Disruptors and Child Development Endocrine Disruptors and Child Development. Arch Pediatr Adolesc Med. 2012 Jun 4:1-7. doi: 10.1001/archpediatrics.2012.241. [Epub ahead of print]
- 18: Linehan C, Gupta S, Samali A, O'Connor L. Bisphenol A-Mediated Suppression of LPL Gene Expression Inhibits Triglyceride Accumulation during Adipogenic Differentiation of Human Adult Stem Cells. PLoS One. 2012;7(5):e36109.
- 19: Mielke H, Gundert-Remy U. Physiologically based toxicokinetic modelling as a tool to support risk assessment: three case studies. J Toxicol. 2012;2012:359471.
- 20: Betancourt AM, Wang J, Jenkins S, Mobley J, Russo J, Lamartiniere CA. Altered carcinogenesis and proteome in mammary glands of rats after prepubertal exposures to the hormonally active chemicals bisphenol a and genistein. J Nutr. 2012 Jul;142(7):1382S-8S.
- 21: Dupuis A, Migeot V, Cariot A, Albouy-Llaty M, Legube B, Rabouan S. Quantification of bisphenol A, 353-nonyl-phenol and their chlorinated derivatives in drinking water treatment plants. Environ Sci Pollut Res Int. 2012 May 31.
- 22: Shankar A, Teppala S, Sabanayagam C. Bisphenol A and Peripheral Arterial Disease: Results from the NHANES. Environ Health Perspect. 2012 May 29. [Epub ahead of print]
- 23: Liao C, Liu F, Alomirah H, Loi VD, Mohd MA, Moon HB, Nakata H, Kannan K. Bisphenol s in urine from the United States and seven asian countries: occurrence and human exposures. Environ Sci Technol. 2012 Jun 19;46(12):6860-6.
- 24: Koch HM, Kolossa-Gehring M, Schröter-Kermani C, Angerer J, Brüning T. Bisphenol A in 24 h urine and plasma samples of the German Environmental Specimen Bank from 1995 to 2009: A retrospective exposure evaluation. J Expo Sci Environ Epidemiol. 2012 May 23. doi: 10.1038/jes.2012.39. [Epub ahead of print]
- 25: Liao C, Liu F, Kannan K. Bisphenol s, a new bisphenol analogue, in paper products and currency bills and its association with bisphenol a residues. Environ Sci Technol. 2012 Jun 19;46(12):6515-22.

- 26: Kosarac I, Kubwabo C, Lalonde K, Foster W. A novel method for the quantitative determination of free and conjugated bisphenol A in human maternal and umbilical cord blood serum using a two-step solid phase extraction and gas chromatography/tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci. 2012 Jun 1;898:90-4.
- 27: Santhi VA, Sakai N, Ahmad ED, Mustafa AM. Occurrence of bisphenol A in surface water, drinking water and plasma from Malaysia with exposure assessment from consumption of drinking water. Sci Total Environ. 2012 Jun 15;427-428:332-8.
- 28: Fernandez SV, Huang Y, Snider KE, Zhou Y, Pogash TJ, Russo J. Expression and DNA methylation changes in human breast epithelial cells after bisphenol A exposure. Int J Oncol. 2012 Jul;41(1):369-77. doi: 10.3892/ijo.2012.1444.
- 29: Qin XY, Kojima Y, Mizuno K, Ueoka K, Muroya K, Miyado M, Zaha H, Akanuma H, Zeng Q, Fukuda T, Yoshinaga J, Yonemoto J, Kohri K, Hayashi Y, Fukami M, Ogata T, Sone H. Identification of novel low-dose bisphenol a targets in human foreskin fibroblast cells derived from hypospadias patients. PLoS One. 2012;7(5):e36711.
- 30: Tharp AP, Maffini MV, Hunt PA, Vandevoort CA, Sonnenschein C, Soto AM. Bisphenol A alters the development of the rhesus monkey mammary gland. Proc Natl Acad Sci U S A. 2012 May 22;109(21):8190-5.
- 31: Perera F, Vishnevetsky J, Herbstman JB, Calafat AM, Xiong W, Rauh V, Wang S. Prenatal Bisphenol A Exposure and Child Behavior in an Inner City Cohort. Environ Health Perspect. 2012 Apr 27. [Epub ahead of print]
- 32: Krotz SP, Carson SA, Tomey C, Buster JE. Phthalates and bisphenol do not accumulate in human follicular fluid. J Assist Reprod Genet. 2012 Apr 27. [Epub ahead of print]
- 33: van der Veen I, de Boer J. Phosphorus flame retardants: Properties, production, environmental occurrence, toxicity and analysis. Chemosphere. 2012 Aug;88(10):1119-53.
- 34: Huc L, Lemarié A, Guéraud F, Héliès-Toussaint C. Low concentrations of bisphenol A induce lipid accumulation mediated by the production of reactive oxygen species in the mitochondria of HepG2 cells. Toxicol In Vitro. 2012 Aug;26(5):709-17.
- 35: He Z, Paule MG, Ferguson SA. Low oral doses of bisphenol A increase volume of the sexually dimorphic nucleus of the preoptic area in male, but not female, rats at postnatal day 21. Neurotoxicol Teratol. 2012 May;34(3):331-7.
- 36: Greathouse KL, Bredfeldt T, Everitt JI, Lin K, Berry T, Kannan K, Mittelstadt ML, Ho SM, Walker CL. Environmental estrogens differentially engage the histone methyltransferase EZH2 to increase risk of uterine tumorigenesis. Mol Cancer Res. 2012 Apr;10(4):546-57.
- 37: Feng Y, Yin J, Jiao Z, Shi J, Li M, Shao B. Bisphenol AF may cause testosterone reduction by directly affecting testis function in adult male rats. Toxicol Lett. 2012 Jun 1;211(2):201-9.
- 38: Bangsgaard N, Thyssen JP, Menné T, Andersen KE, Mörtz C, Paulsen E, Sommerlund M, Veien NK, Laurberg G, Kaaber K, Thormann J, Andersen BL, Danielsen A, Avnstorp C, Kristensen B, Kristensen O, Vissing S, Nielsen NH, Johansen JD. Contact allergy to epoxy resin: risk occupations and consequences. Contact Dermatitis. 2012 Apr 15. doi: 10.1111/j.1600-0536.2012.02072.x. [Epub ahead of print]
- 39: Chevalier N, Vega A, Bouskine A, Siddeek B, Michiels JF, Chevallier D, Fénichel P. GPR30, the non-classical membrane G protein related estrogen receptor, is overexpressed in human seminoma and promotes seminoma cell proliferation. PLoS One. 2012;7(4):e34672.
- 40: Liao C, Kannan K. Determination of free and conjugated forms of bisphenol A in human urine and serum by liquid chromatography-tandem mass spectrometry. Environ Sci Technol. 2012 May 1;46(9):5003-9.

- 41: Nahar MS, Soliman AS, Colacino JA, Calafat AM, Battige K, Hablas A, Seifeldin IA, Dolinoy DC, Rozek LS. Urinary bisphenol A concentrations in girls from rural and urban Egypt: a pilot study. Environ Health. 2012 Apr 2;11:20.
- 42: Anderson OS, Nahar MS, Faulk C, Jones TR, Liao C, Kannan K, Weinhouse C, Rozek LS, Dolinoy DC. Epigenetic responses following maternal dietary exposure to physiologically relevant levels of bisphenol A. Environ Mol Mutagen. 2012 Jun;53(5):334-42. doi: 10.1002/em.21692.
- 43: Doerge DR, Twaddle NC, Vanlandingham M, Fisher JW. Pharmacokinetics of bisphenol A in serum and adipose tissue following intravenous administration to adult female CD-1 mice. Toxicol Lett. 2012 Jun 1;211(2):114-9.
- 44: Komada M, Asai Y, Morii M, Matsuki M, Sato M, Nagao T. Maternal bisphenol A oral dosing relates to the acceleration of neurogenesis in the developing neocortex of mouse fetuses. Toxicology. 2012 May 16;295(1-3):31-8
- 45: Chung SY, Kwon H, Choi YH, Karmaus W, Merchant AT, Song KB, Sakong J, Ha M, Hong YC, Kang D. Dental composite fillings and bisphenol A among children: a survey in South Korea. Int Dent J. 2012 Apr;62(2):65-9. doi: 10.1111/j.1875-595X.2011.00089.x.
- 46: Li M, Bi Y, Qi L, Wang T, Xu M, Huang Y, Xu Y, Chen Y, Lu J, Wang W, Ning G. Exposure to bisphenol A is associated with low-grade albuminuria in Chinese adults. Kidney Int. 2012 Jun;81(11):1131-9. doi: 10.1038/ki.2012.6.
- 47: Hanna CW, Bloom MS, Robinson WP, Kim D, Parsons PJ, vom Saal FS, Taylor JA, Steuerwald AJ, Fujimoto VY. DNA methylation changes in whole blood is associated with exposure to the environmental contaminants, mercury, lead, cadmium and bisphenol A, in women undergoing ovarian stimulation for IVF. Hum Reprod. 2012 May;27(5):1401-10.
- 48: Christiansen S, Kortenkamp A, Axelstad M, Boberg J, Scholze M, Jacobsen PR, Faust M, Lichtensteiger W, Schlumpf M, Burdorf A, Hass U. Mixtures of endocrine disrupting contaminants modelled on human high end exposures: an exploratory study in rats. Int J Androl. 2012 Jun;35(3):303-16. doi: 10.1111/j.1365-2605.2011.01242.x.
- 49: Jones BA, Watson NV. Perinatal BPA exposure demasculinizes males in measures of affect but has no effect on water maze learning in adulthood. Horm Behav. 2012 Apr;61(4):605-10.
- 50: Spanier AJ, Kahn RS, Kunselman AR, Hornung R, Xu Y, Calafat AM, Lanphear BP. Prenatal exposure to bisphenol a and child wheeze from birth to 3 years of age. Environ Health Perspect. 2012 Jun;120(6):916-20.
- 51: Lakind JS, Levesque J, Dumas P, Bryan S, Clarke J, Naiman DQ. Comparing United States and Canadian population exposures from National Biomonitoring Surveys: bisphenol A intake as a case study. J Expo Sci Environ Epidemiol. 2012 May-Jun;22(3):219-26. doi: 10.1038/jes.2012.1.
- 52: Nanjappa MK, Simon L, Akingbemi BT. The industrial chemical bisphenol A (BPA) interferes with proliferative activity and development of steroidogenic capacity in rat Leydig cells. Biol Reprod. 2012 May 3;86(5):135, 1-12.
- 53: Pelayo S, Oliveira E, Thienpont B, Babin PJ, Raldúa D, André M, Piña B. Triiodothyronine-induced changes in the zebrafish transcriptome during the eleutheroembryonic stage: implications for bisphenol A developmental toxicity. Aquat Toxicol. 2012 Apr;110-111:114-22.
- 54: Geens T, Neels H, Covaci A. Distribution of bisphenol-A, triclosan and n-nonylphenol in human adipose tissue, liver and brain. Chemosphere. 2012 May;87(7):796-802.
- 55: Fénichel P, Déchaux H, Harthe C, Gal J, Ferrari P, Pacini P, Wagner-Mahler K, Pugeat M, Brucker-Davis F. Unconjugated bisphenol A cord blood levels in boys with descended or undescended testes. Hum Reprod. 2012 Apr;27(4):983-90.
- 56: Braun JM, Smith KW, Williams PL, Calafat AM, Berry K, Ehrlich S, Hauser R. Variability of urinary phthalate metabolite and bisphenol A concentrations before and during pregnancy. Environ Health Perspect. 2012 May;120(5):739-45.

- 57: Vom Saal FS, Nagel SC, Coe BL, Angle BM, Taylor JA. The estrogenic endocrine disrupting chemical bisphenol A (BPA) and obesity. Mol Cell Endocrinol. 2012 May 6;354(1-2):74-84.
- 58: Alonso-Magdalena P, Ropero AB, Soriano S, García-Arévalo M, Ripoll C, Fuentes E, Quesada I, Nadal Á. Bisphenol-A acts as a potent estrogen via non-classical estrogen triggered pathways. Mol Cell Endocrinol. 2012 May 22;355(2):201-7.
- 59: Zhang HQ, Zhang XF, Zhang LJ, Chao HH, Pan B, Feng YM, Li L, Sun XF, Shen W. Fetal exposure to bisphenol A affects the primordial follicle formation by inhibiting the meiotic progression of oocytes. Mol Biol Rep. 2012 May;39(5):5651-7.
- 60: Brieño-Enríquez MA, Reig-Viader R, Cabero L, Toran N, Martínez F, Roig I, Garcia Caldés M. Gene expression is altered after bisphenol A exposure in human fetal oocytes in vitro. Mol Hum Reprod. 2012 Apr;18(4):171-83.
- 61: Boas M, Feldt-Rasmussen U, Main KM. Thyroid effects of endocrine disrupting chemicals. Mol Cell Endocrinol. 2012 May 22;355(2):240-8.
- 62: Asimakopoulos AG, Thomaidis NS, Koupparis MA. Recent trends in biomonitoring of bisphenol A, 4-t-octylphenol, and 4-nonylphenol. Toxicol Lett. 2012 Apr 25;210(2):141-54.
- 63: Wang H, Wu T, Qin F, Wang L, Wang Z. Molecular cloning of Foxl2 gene and the effects of endocrine-disrupting chemicals on its mRNA level in rare minnow, Gobiocypris rarus. Fish Physiol Biochem. 2012 Jun;38(3):653-64.
- 64: Jenkins S, Betancourt AM, Wang J, Lamartiniere CA. Endocrine-active chemicals in mammary cancer causation and prevention. J Steroid Biochem Mol Biol. 2012 Apr;129(3-5):191-200.
- 65: Huang YQ, Wong CK, Zheng JS, Bouwman H, Barra R, Wahlström B, Neretin L, Wong MH. Bisphenol A (BPA) in China: a review of sources, environmental levels, and potential human health impacts. Environ Int. 2012 Jul;42:91-9.

Phthalater

- 1: Martina CA, Weiss B, Swan SH. Lifestyle behaviors associated with exposures to endocrine disruptors. Neurotoxicology. 2012 Jun 21. [Epub ahead of print]
- 2: Just AC, Whyatt RM, Perzanowski MS, Calafat AM, Perera FP, Goldstein IF, Chen Q, Rundle AG, Miller RL. Prenatal Exposure to Butylbenzyl Phthalate and Early Eczema in an Urban Cohort. Environ Health Perspect. 2012 Jun 13. [Epub ahead of print]
- 3: Krüger T, Cao Y, Kjærgaard SK, Knudsen LE, Bonefeld-Jørgensen EC. Effects of Phthalates on the Human Corneal Endothelial Cell Line B4G12. Int J Toxicol. 2012 Jun 21. [Epub ahead of print]
- 4: Kambia N, Dine T, Gressier B, Luyckx M, Brunet C, Guimber D, Turck D, Gottrand F, Michaud L. Strong Variability of Di(2-ethylhexyl)phthalate (DEHP) Plasmatic Rate in Infants and Children Undergoing 12-Hour Cyclic Parenteral Nutrition. JPEN J Parenter Enteral Nutr. 2012 Jun 20. [Epub ahead of print]
- 5: Guo Y, Zhang Z, Liu L, Li Y, Ren N, Kannan K. Occurrence and Profiles of Phthalates in Foodstuffs from China and Their Implications for Human Exposure. J Agric Food Chem. 2012 Jun 26. [Epub ahead of print]
- 6: Johnson KJ, Heger NE, Boekelheide K. Of mice and men (and rats): phthalate-induced fetal testis endocrine disruption is species-dependent. Toxicol Sci. 2012 Jun 19. [Epub ahead of print]
- 7: Andra SS, Makris KC. Thyroid disrupting chemicals in plastic additives and thyroid health. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev. 2012 Apr;30(2):107-51.

- 8: Wei Z, Song L, Wei J, Chen T, Chen J, Lin Y, Xia W, Xu B, Li X, Chen X, Li Y, Xu S. Maternal exposure to di-(2-ethylhexyl)phthalate alters kidney development through the renin-angiotensin system in offspring. Toxicol Lett. 2012 Jun 5;212(2):212-221. [Epub ahead of print]
- 9: Christensen KL, Lorber M, Koch HM, Kolossa-Gehring M, Morgan MK. Population variability of phthalate metabolites and bisphenol A concentrations in spot urine samples versus 24- or 48-h collections. J Expo Sci Environ Epidemiol. 2012 Jun 6. doi: 10.1038/jes.2012.52. [Epub ahead of print]
- 10: Meeker JD. Exposure to Environmental Endocrine Disruptors and Child DevelopmentEndocrine Disruptors and Child Development. Arch Pediatr Adolesc Med. 2012 Jun 4:1-7. doi: 10.1001/archpediatrics.2012.241. [Epub ahead of print]
- 11: Liu L, Xia T, Guo L, Cao L, Zhao B, Zhang J, Dong S, Shen H. Expressing urine from a gel disposable diaper for biomonitoring using phthalates as an example. J Expo Sci Environ Epidemiol. 2012 May 30. doi: 10.1038/jes.2012.51. [Epub ahead of print]
- 12: van den Driesche S, Walker M, McKinnell C, Scott HM, Eddie SL, Mitchell RT, Seckl JR, Drake AJ, Smith LB, Anderson RA, Sharpe RM. Proposed Role for COUP-TFII in Regulating Fetal Leydig Cell Steroidogenesis, Perturbation of Which Leads to Masculinization Disorders in Rodents. PLoS One. 2012;7(5):e37064
- 13: Mieritz MG, Frederiksen H, Sørensen K, Aksglaede L, Mouritsen A, Hagen CP, Skakkebaek NE, Andersson AM, Juul A. Urinary phthalate excretion in 555 healthy Danish boys with and without pubertal gynaecomastia. Int J Androl. 2012 Jun;35(3):227-35. doi: 10.1111/j.1365-2605.2012.01279.x.
- 14: Dirtu AC, Van den Eede N, Malarvannan G, Ionas AC, Covaci A. Analytical methods for selected emerging contaminants in human matrices-a review. Anal Bioanal Chem. 2012 May 12. [Epub ahead of print]
- 15: Chen L, Zhao Y, Li L, Chen B, Zhang Y. Exposure assessment of phthalates in non-occupational populations in China. Sci Total Environ. 2012 Jun 15;427-428:60-9.
- 16: Fierens T, Servaes K, Van Holderbeke M, Geerts L, De Henauw S, Sioen I, Vanermen G. Analysis of phthalates in food products and packaging materials sold on the Belgian market. Food Chem Toxicol. 2012 Jul;50(7):2575-83.
- 17: Wang N, Kong D, Shan Z, Shi L, Cai D, Cao Y, Liu Y, Pang G. Simultaneous determination of pesticides, polycyclic aromatic hydrocarbons, polychlorinated biphenyls and phthalate esters in human adipose tissue by gas chromatography-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci. 2012 Jun 1;898:38-52.
- 18: Krotz SP, Carson SA, Tomey C, Buster JE. Phthalates and bisphenol do not accumulate in human follicular fluid. J Assist Reprod Genet. 2012 Apr 27. [Epub ahead of print]
- 19: Testa C, Nuti F, Hayek J, De Felice C, Chelli M, Rovero P, Latini G, Papini AM. Di-(2-ethylhexyl) phthalate and autism spectrum disorders. ASN Neuro. 2012 May 30;4(4). pii: e00089. doi: 10.1042/AN20120015.
- 20: Mortamais M, Chevrier C, Philippat C, Petit C, Calafat AM, Ye X, Silva MJ, Brambilla C, Eijkemans MJ, Charles MA, Cordier S, Slama R. Correcting for the influence of sampling conditions on biomarkers of exposure to phenols and phthalates: a 2-step standardization method based on regression residuals. Environ Health. 2012 Apr 26;11(1):29. [Epub ahead of print]
- 21: Guo Y, Kannan K. Challenges encountered in the analysis of phthalate esters in foodstuffs and other biological matrices. Anal Bioanal Chem. 2012 Apr 25. [Epub ahead of print]
- 22: Zhao Y, Ao H, Chen L, Sottas CM, Ge RS, Li L, Zhang Y. Mono-(2-ethylhexyl) phthalate affects the steroidogenesis in rat Leydig cells through provoking ROS perturbation. Toxicol In Vitro. 2012 Apr 14. [Epub ahead of print]

- 23: Krysiak-Baltyn K, Toppari J, Skakkebaek NE, Jensen TS, Virtanen HE, Schramm KW, Shen H, Vartiainen T, Kiviranta H, Taboureau O, Audouze K, Brunak S, Main KM. Association between chemical pattern in breast milk and congenital cryptorchidism: modelling of complex human exposures. Int J Androl. 2012 Jun;35(3):294-302. doi: 10.1111/j.1365-2605.2012.01268.x.
- 24: Heger NE, Hall SJ, Sandrof MA, McDonnell EV, Hensley JB, McDowell EN, Martin KA, Gaido KW, Johnson KJ, Boekelheide K. Human Fetal Testis Xenografts Are Resistant To Phthalate-Induced Endocrine Disruption. Environ Health Perspect. 2012 Apr 17. [Epub ahead of print]
- 25: Schütze A, Pälmke C, Angerer J, Weiss T, Brüning T, Koch HM. Quantification of biomarkers of environmental exposure to di(isononyl)cyclohexane-1,2-dicarboxylate (DINCH) in urine via HPLC-MS/MS. J Chromatogr B Analyt Technol Biomed Life Sci. 2012 May 1;895-896:123-30.
- 26: Anderson AM, Carter KW, Anderson D, Wise MJ. Coexpression of nuclear receptors and histone methylation modifying genes in the testis: implications for endocrine disruptor modes of action. PLoS One. 2012;7(4):e34158.
- 27: Bevan R, Jones K, Cocker J, Assem FL, Levy LS. Reference ranges for key biomarkers of chemical exposure within the UK population. Int J Hyg Environ Health. 2012 Apr 9. [Epub ahead of print]
- 28: Rose RJ, Priston MJ, Rigby-Jones AE, Sneyd JR. The effect of temperature on di(2-ethylhexyl) phthalate leaching from PVC infusion sets exposed to lipid emulsions. Anaesthesia. 2012 May;67(5):514-20. doi: 10.1111/j.1365-2044.2011.07006.x.
- 29: Giribabu N, Sainath SB, Sreenivasula Reddy P. Prenatal di-n-butyl phthalate exposure alters reproductive functions at adulthood in male rats. Environ Toxicol. 2012 Apr 4. doi: 10.1002/tox.21779. [Epub ahead of print]
- 30: Caldwell JC. DEHP: Genotoxicity and potential carcinogenic mechanisms-A review. Mutat Res. 2012 Apr 3. [Epub ahead of print]
- 31: Muczynski V, Cravedi JP, Lehraiki A, Levacher C, Moison D, Lecureuil C, Messiaen S, Perdu E, Frydman R, Habert R, Rouiller-Fabre V. Effect of mono-(2-ethylhexyl) phthalate on human and mouse fetal testis: In vitro and in vivo approaches. Toxicol Appl Pharmacol. 2012 May 15;261(1):97-104.
- 32: Kobrosly RW, Parlett LE, Stahlhut RW, Barrett ES, Swan SH. Socioeconomic factors and phthalate metabolite concentrations among United States women of reproductive age. Environ Res. 2012 May;115:11-7.
- 33: Frederiksen H, Sørensen K, Mouritsen A, Aksglaede L, Hagen CP, Petersen JH, Skakkebaek NE, Andersson AM, Juul A. High urinary phthalate concentration associated with delayed pubarche in girls. Int J Androl. 2012 Jun;35(3):216-26. doi: 10.1111/j.1365-2605.2012.01260.x.
- 34: Desdoits-Lethimonier C, Albert O, Le Bizec B, Perdu E, Zalko D, Courant F, Lesné L, Guillé F, Dejucq-Rainsford N, Jégou B. Human testis steroidogenesis is inhibited by phthalates. Hum Reprod. 2012 May;27(5):1451-9.
- 35: Jensen MS, Nørgaard-Pedersen B, Toft G, Hougaard DM, Bonde JP, Cohen A, Thulstrup AM, Ivell R, Anand-Ivell R, Lindh CH, Jönsson BA. Phthalates and perfluorooctanesulfonic Acid in human amniotic fluid: temporal trends and timing of amniocentesis in pregnancy. Environ Health Perspect. 2012 Jun;120(6):897-903.
- 36: Christiansen S, Kortenkamp A, Axelstad M, Boberg J, Scholze M, Jacobsen PR, Faust M, Lichtensteiger W, Schlumpf M, Burdorf A, Hass U. Mixtures of endocrine disrupting contaminants modelled on human high end exposures: an exploratory study in rats. Int J Androl. 2012 Jun;35(3):303-16. doi: 10.1111/j.1365-2605.2011.01242.x.
- 37: Snijder CA, Vlot IJ, Burdorf A, Obermann-Borst SA, Helbing WA, Wildhagen MF, Steegers EA, Steegers-Theunissen RP. Congenital heart defects and parental occupational exposure to chemicals. Hum Reprod. 2012 May;27(5):1510-7.

- 38: Meeker JD, Calafat AM, Hauser R. Urinary phthalate metabolites and their biotransformation products: predictors and temporal variability among men and women. J Expo Sci Environ Epidemiol. 2012 Jul;22(4):376-85. doi: 10.1038/jes.2012.7.
- 39: Yao PL, Lin YC, Richburg JH. Mono-(2-ethylhexyl) phthalate (MEHP) promotes invasion and migration of human testicular embryonal carcinoma cells. Biol Reprod. 2012 May 31;86(5):160, 1-10. Print 2012.
- 40: Søeborg T, Frederiksen H, Andersson AM. Cumulative risk assessment of phthalate exposure of Danish children and adolescents using the hazard index approach. Int J Androl. 2012 Jun;35(3):245-52. doi: 10.1111/j.1365-2605.2011.01240.x.
- 41: Tonk EC, Verhoef A, Gremmer ER, van Loveren H, Piersma AH. Relative sensitivity of developmental and immune parameters in juvenile versus adult male rats after exposure to di(2-ethylhexyl) phthalate. Toxicol Appl Pharmacol. 2012 Apr 1;260(1):48-57.
- 42: Braun JM, Smith KW, Williams PL, Calafat AM, Berry K, Ehrlich S, Hauser R. Variability of urinary phthalate metabolite and bisphenol A concentrations before and during pregnancy. Environ Health Perspect. 2012 May;120(5):739-45.
- 43: Hsu NY, Lee CC, Wang JY, Li YC, Chang HW, Chen CY, Bornehag CG, Wu PC, Sundell J, Su HJ. Predicted risk of childhood allergy, asthma, and reported symptoms using measured phthalate exposure in dust and urine. Indoor Air. 2012 Jun;22(3):186-99. doi: 10.1111/j.1600-0668.2011.00753.x.
- 44: Kasper-Sonnenberg M, Koch HM, Wittsiepe J, Wilhelm M. Levels of phthalate metabolites in urine among mother-child-pairs results from the Duisburg birth cohort study, Germany. Int J Hyg Environ Health. 2012 Apr;215(3):373-82.
- 45: Boas M, Feldt-Rasmussen U, Main KM. Thyroid effects of endocrine disrupting chemicals. Mol Cell Endocrinol. 2012 May 22;355(2):240-8.
- 46: Saffarini CM, Heger NE, Yamasaki H, Liu T, Hall SJ, Boekelheide K. Induction and Persistence of Abnormal Testicular Germ Cells Following Gestational Exposure to Di-(n-Butyl) Phthalate in p53-Null Mice. J Androl. 2012 May;33(3):505-13.
- 47: Hines CJ, Hopf NB, Deddens JA, Silva MJ, Calafat AM. Occupational exposure to diisononyl phthalate (DiNP) in polyvinyl chloride processing operations. Int Arch Occup Environ Health. 2012 Apr;85(3):317-25.
- 48: Suzuki Y, Yoshinaga J, Mizumoto Y, Serizawa S, Shiraishi H. Foetal exposure to phthalate esters and anogenital distance in male newborns. Int J Androl. 2012 Jun;35(3):236-44. doi: 10.1111/j.1365-2605.2011.01190.x.
- 49: Mendiola J, Meeker JD, Jørgensen N, Andersson AM, Liu F, Calafat AM, Redmon JB, Drobnis EZ, Sparks AE, Wang C, Hauser R, Swan SH. Urinary Concentrations of Di(2-ethylhexyl) Phthalate Metabolites and Serum Reproductive Hormones: Pooled Analysis of Fertile and Infertile Men. J Androl. 2012 May;33(3):488-98.
- 50: Liu L, Bao H, Liu F, Zhang J, Shen H. Phthalates exposure of Chinese reproductive age couples and its effect on male semen quality, a primary study. Environ Int. 2012 Jul;42:78-83.

Parabens

- 1: Smith KW, Braun JM, Williams PL, Ehrlich S, Correia KF, Calafat AM, Ye X, Ford J, Keller M, Meeker JD, Hauser R. Predictors and Variability of Urinary Paraben Concentrations in Men and Women, Including before and during Pregnancy. Environ Health Perspect. 2012 Jun 21. [Epub ahead of print]
- 2: Savage JH, Matsui EC, Wood RA, Keet CA. Urinary levels of triclosan and parabens are associated with aeroallergen and food sensitization. J Allergy Clin Immunol. 2012 Jun 14. [Epub ahead of print]

- 3: Harvey PW, Everett DJ. Parabens detection in different zones of the human breast: consideration of source and implications of findings. J Appl Toxicol. 2012 May;32(5):305-9. doi: 10.1002/jat.2743.
- 4: Christiansen S, Kortenkamp A, Axelstad M, Boberg J, Scholze M, Jacobsen PR, Faust M, Lichtensteiger W, Schlumpf M, Burdorf A, Hass U. Mixtures of endocrine disrupting contaminants modelled on human high end exposures: an exploratory study in rats. Int J Androl. 2012 Jun;35(3):303-16. doi: 10.1111/j.1365-2605.2011.01242.x.
- 5: Park CJ, Nah WH, Lee JE, Oh YS, Gye MC. Butyl paraben-induced changes in DNA methylation in rat epididymal spermatozoa. Andrologia. 2012 May;44 Suppl 1:187-93. doi: 10.1111/j.1439-0272.2011.01162.x.

Perflourinated and polyfluorinated compounds

- 1: Song M, Kim YJ, Park YK, Ryu JC. Changes in thyroid peroxidase activity in response to various chemicals. J Environ Monit. 2012 Jun 15. [Epub ahead of print]
- 2: Llorca M, Farré M, Picó Y, Müller J, Knepper TP, Barceló D. Analysis of perfluoroalkyl substances in waters from Germany and Spain. Sci Total Environ. 2012 Jun 6;431C:139-150. [Epub ahead of print]
- 3: Asher BJ, Wang Y, De Silva AO, Backus S, Muir DC, Wong CS, Martin JW. Enantiospecific Perfluorooctane Sulfonate (PFOS) Analysis Reveals Evidence for the Source Contribution of PFOS-Precursors to the Lake Ontario Foodweb. Environ Sci Technol. 2012 Jun 29. [Epub ahead of print]
- 4: Min JY, Lee KJ, Park JB, Min KB. Perfluorooctanoic acid exposure is associated with elevated homocysteine and hypertension in US adults. Occup Environ Med. 2012 May 31. [Epub ahead of print]
- 5: Toft G, Jönsson BA, Lindh CH, Giwercman A, Spano M, Heederik D, Lenters V, Vermeulen R, Rylander L, Pedersen HS, Ludwicki JK, Zviezdai V, Bonde JP. Exposure to perfluorinated compounds and human semen quality in arctic and European populations. Hum Reprod. 2012 May 30. [Epub ahead of print]
- 6: Stein CR, Wolff MS, Calafat AM, Kato K, Engel SM. Comparison of polyfluoroalkyl compound concentrations in maternal serum and amniotic fluid: A pilot study. Reprod Toxicol. 2012 May 18. [Epub ahead of print]
- 7: Goosey E, Harrad S. Perfluoroalkyl substances in UK indoor and outdoor air: Spatial and seasonal variation, and implications for human exposure. Environ Int. 2012 Sep;45:86-90.
- 8: Ji K, Kim S, Kho Y, Paek D, Sakong J, Ha J, Kim S, Choi K. Serum concentrations of major perfluorinated compounds among the general population in Korea: Dietary sources and potential impact on thyroid hormones. Environ Int. 2012 Sep;45:78-85.
- 9: Beckett T, Bonneau L, Howard A, Blanchard J, Borda J, Weiner DJ, Wang L, Gao GP, Kolls JK, Bohm R, Liggitt D, Weiss DJ. Inhalation of nebulized perfluorochemical enhances recombinant adenovirus and adeno-associated virus-mediated gene expression in lung epithelium. Hum Gene Ther Methods. 2012 Apr;23(2):98-110.
- 10: Post GB, Cohn PD, Cooper KR. Perfluorooctanoic acid (PFOA), an emerging drinking water contaminant: A critical review of recent literature. Environ Res. 2012 Jul;116:93-117.
- 11: Olsen GW, Lange CC, Ellefson ME, Mair DC, Church TR, Goldberg CL, Herron RM, Medhdizadehkashi Z, Nobiletti JB, Rios JA, Reagen WK, Zobel LR. Temporal trends of perfluoroalkyl concentrations in american red cross adult blood donors, 2000-2010. Environ Sci Technol. 2012 Jun 5;46(11):6330-8.
- 12: Hazelton PD, Cope WG, Pandolfo TJ, Mosher S, Strynar MJ, Barnhart MC, Bringolf RB. Partial life-cycle and acute toxicity of perfluoroalkyl acids to freshwater mussels. Environ Toxicol Chem. 2012 Jul;31(7):1611-20. doi: 10.1002/etc.1866.

- 13: Knobeloch L, Imm P, Anderson H. Perfluoroalkyl chemicals in vacuum cleaner dust from 39 Wisconsin homes. Chemosphere. 2012 Aug;88(7):779-83.
- 14: Woskie SR, Gore R, Steenland K. Retrospective Exposure Assessment of Perfluorooctanoic Acid Serum Concentrations at a Fluoropolymer Manufacturing Plant. Ann Occup Hyg. 2012 Apr 26. [Epub ahead of print]
- 15: Zhang W, Zhang Y, Zhang H, Wang J, Cui R, Dai J. Sex differences in transcriptional expression of FABPs in zebrafish liver after chronic perfluorononanoic acid exposure. Environ Sci Technol. 2012 May 1;46(9):5175-82.
- 16: Lindh CH, Rylander L, Toft G, Axmon A, Rignell-Hydbom A, Giwercman A, Pedersen HS, Góalczyk K, Ludwicki JK, Zvyezday V, Vermeulen R, Lenters V, Heederik D, Bonde JP, Jönsson BA. Blood serum concentrations of perfluorinated compounds in men from Greenlandic Inuit and European populations. Chemosphere. 2012 Apr 9. [Epub ahead of print]
- 17: Domingo JL, Ericson-Jogsten I, Perelló G, Nadal M, Van Bavel B, Kärrman A. Human exposure to perfluorinated compounds in Catalonia, Spain: contribution of drinking water and fish and shellfish. J Agric Food Chem. 2012 May 2;60(17):4408-15.
- 18: Wan HT, Zhao YG, Wei X, Hui KY, Giesy JP, Wong CK. PFOS-induced hepatic steatosis, the mechanistic actions on β-oxidation and lipid transport. Biochim Biophys Acta. 2012 Jul;1820(7):1092-101.
- 19: Herzke D, Olsson E, Posner S. Perfluoroalkyl and polyfluoroalkyl substances (PFASs) in consumer products in Norway A pilot study. Chemosphere. 2012 Aug;88(8):980-7.
- 20: Vestergren R, Ullah S, Cousins IT, Berger U. A matrix effect-free method for reliable quantification of perfluoroalkyl carboxylic acids and perfluoroalkane sulfonic acids at low parts per trillion levels in dietary samples. J Chromatogr A. 2012 May 11;1237:64-71.
- 21: Specht IO, Hougaard KS, Spanò M, Bizzaro D, Manicardi GC, Lindh CH, Toft G, Jönsson BA, Giwercman A, Bonde JP. Sperm DNA integrity in relation to exposure to environmental perfluoroalkyl substances A study of spouses of pregnant women in three geographical regions. Reprod Toxicol. 2012 Jul;33(4):577-83.
- 22: Sonne C, Bustnes JO, Herzke D, Jaspers VL, Covaci A, Eulaers I, Halley DJ, Moum T, Ballesteros M, Eens M, Ims RA, Hanssen SA, Erikstad KE, Johnsen TV, Rigét FF, Jensen AL, Kjelgaard-Hansen M. Blood plasma clinical-chemical parameters as biomarker endpoints for organohalogen contaminant exposure in Norwegian raptor nestlings. Ecotoxicol Environ Saf. 2012 Jun;80:76-83.
- 23: Nordén M, Westman O, Venizelos N, Engwall M. Perfluorooctane sulfonate increases β -oxidation of palmitic acid in chicken liver. Environ Sci Pollut Res Int. 2012 Jun;19(5):1859-63.
- 24: Iwasaki Y, Terayama E, Kato A, Ito R, Saito K, Makino T, Nakazawa H. Quantitative analysis of perfluorinated chemicals in media for in vitro fertilization and related samples. Chemosphere. 2012 Jul;88(4):445-9.
- 25: Shi Y, Wang J, Pan Y, Cai Y. Tissue distribution of perfluorinated compounds in farmed freshwater fish and human exposure by consumption. Environ Toxicol Chem. 2012 Apr;31(4):717-23. doi: 10.1002/etc.1758.
- 26: Tian M, Peng S, Martin FL, Zhang J, Liu L, Wang Z, Dong S, Shen H. Perfluorooctanoic acid induces gene promoter hypermethylation of glutathione-S-transferase Pi in human liver LO2 cells. Toxicology. 2012 Jun 14;296(1-3):48-55.
- 27: Luque N, Ballesteros-Gómez A, van Leeuwen S, Rubio S. A simple and rapid extraction method for sensitive determination of perfluoroalkyl substances in blood serum suitable for exposure evaluation. J Chromatogr A. 2012 Apr 27;1235:84-91.
- 28: Turgeon O'Brien H, Blanchet R, Gagné D, Lauzière J, Vézina C, Vaissière E, Ayotte P, Déry S. Exposure to toxic metals and persistent organic pollutants in Inuit children attending childcare centers in Nunavik, Canada. Environ Sci

Technol. 2012 Apr 17;46(8):4614-23.

- 29: Jensen MS, Nørgaard-Pedersen B, Toft G, Hougaard DM, Bonde JP, Cohen A, Thulstrup AM, Ivell R, Anand-Ivell R, Lindh CH, Jönsson BA. Phthalates and perfluorooctanesulfonic Acid in human amniotic fluid: temporal trends and timing of amniocentesis in pregnancy. Environ Health Perspect. 2012 Jun;120(6):897-903.
- 30: Butenhoff JL, Pieterman E, Ehresman DJ, Gorman GS, Olsen GW, Chang SC, Princen HM. Distribution of perfluorooctanesulfonate and perfluorooctanoate into human plasma lipoprotein fractions. Toxicol Lett. 2012 May 5;210(3):360-5.
- 31: de Cerio OD, Bilbao E, Cajaraville MP, Cancio I. Regulation of xenobiotic transporter genes in liver and brain of juvenile thicklip grey mullets (Chelon labrosus) after exposure to Prestige-like fuel oil and to perfluorooctane sulfonate. Gene. 2012 Apr 25;498(1):50-8.
- 32: Halldorsson TI, Rytter D, Haug LS, Bech BH, Danielsen I, Becher G, Henriksen TB, Olsen SF. Prenatal exposure to perfluorooctanoate and risk of overweight at 20 years of age: a prospective cohort study. Environ Health Perspect. 2012 May;120(5):668-73.
- 33: Gallo V, Leonardi G, Genser B, Lopez-Espinosa MJ, Frisbee SJ, Karlsson L, Ducatman AM, Fletcher T. Serum perfluorooctanoate (PFOA) and perfluorooctane sulfonate (PFOS) concentrations and liver function biomarkers in a population with elevated PFOA exposure. Environ Health Perspect. 2012 May;120(5):655-60.
- 34: Mondal D, Lopez-Espinosa MJ, Armstrong B, Stein CR, Fletcher T. Relationships of perfluorooctanoate and perfluorooctane sulfonate serum concentrations between mother-child pairs in a population with perfluorooctanoate exposure from drinking water. Environ Health Perspect. 2012 May;120(5):752-7.
- 35: Liao Y, Wang J, Huang QS, Fang C, Kiyama R, Shen H, Dong S. Evaluation of cellular response to perfluorooctane sulfonate in human umbilical vein endothelial cells. Toxicol In Vitro. 2012 Apr;26(3):421-8.
- 36: Schecter A, Malik-Bass N, Calafat AM, Kato K, Colacino JA, Gent TL, Hynan LS, Harris TR, Malla S, Birnbaum L. Polyfluoroalkyl compounds in Texas children from birth through 12 years of age. Environ Health Perspect. 2012 Apr;120(4):590-4.
- 37: Wolf CJ, Schmid JE, Lau C, Abbott BD. Activation of mouse and human peroxisome proliferator-activated receptor-alpha (PPARα) by perfluoroalkyl acids (PFAAs): Further investigation of C4-C12 compounds. Reprod Toxicol. 2012 Jul;33(4):546-51.
- 38: Boas M, Feldt-Rasmussen U, Main KM. Thyroid effects of endocrine disrupting chemicals. Mol Cell Endocrinol. 2012 May 22;355(2):240-8.
- 39: Chang SC, Noker PE, Gorman GS, Gibson SJ, Hart JA, Ehresman DJ, Butenhoff JL. Comparative pharmacokinetics of perfluorooctanesulfonate (PFOS) in rats, mice, and monkeys. Reprod Toxicol. 2012 Jul;33(4):428-40.
- 40: Loccisano AE, Campbell JL Jr, Butenhoff JL, Andersen ME, Clewell HJ 3rd. Evaluation of placental and lactational pharmacokinetics of PFOA and PFOS in the pregnant, lactating, fetal and neonatal rat using a physiologically based pharmacokinetic model. Reprod Toxicol. 2012 Jul;33(4):468-90.
- 41: Domingo JL. Health risks of dietary exposure to perfluorinated compounds. Environ Int. 2012 Apr;40:187-95.
- 42: Loccisano AE, Campbell JL Jr, Butenhoff JL, Andersen ME, Clewell HJ 3rd. Comparison and evaluation of pharmacokinetics of PFOA and PFOS in the adult rat using a physiologically based pharmacokinetic model. Reprod Toxicol. 2012 Jul;33(4):452-67.
- 43: Lindeman B, Maass C, Duale N, Gützkow KB, Brunborg G, Andreassen A. Effects of per- and polyfluorinated compounds on adult rat testicular cells following in vitro exposure. Reprod Toxicol. 2012 Jul;33(4):531-7.

44: Lopez-Espinosa MJ, Fitz-Simon N, Bloom MS, Calafat AM, Fletcher T. Comparison between free serum thyroxine levels, measured by analog and dialysis methods, in the presence of perfluorooctane sulfonate and perfluorooctanoate. Reprod Toxicol. 2012 Jul;33(4):552-5.

45: Dong GH, Zhang YH, Zheng L, Liang ZF, Jin YH, He QC. Subchronic effects of perfluorooctanesulfonate exposure on inflammation in adult male C57BL/6 mice. Environ Toxicol. 2012 May;27(5):285-96. doi: 10.1002/tox.20642.

Triclocarban and triclosan

- 1: Schebb NH, Buchholz BA, Hammock BD, Rice RH. Metabolism of the antibacterial triclocarban by human epidermal keratinocytes to yield protein adducts. J Biochem Mol Toxicol. 2012 Jun;26(6):230-4. doi: 10.1002/jbt.21411.
- 2: Schultz MM, Bartell SE, Schoenfuss HL. Effects of Triclosan and Triclocarban, Two Ubiquitous Environmental Contaminants, on Anatomy, Physiology, and Behavior of the Fathead Minnow (Pimephales promelas). Arch Environ Contam Toxicol. 2012 Jul;63(1):114-24.
- 1: Hurd-Brown T, Udoji F, Martin T, Whalen MM. Effects of DDT and triclosan on tumor-cell binding capacity and cell-surface protein expression of human natural killer cells. J Appl Toxicol. 2012 Jun 21. doi: 10.1002/jat.2767. [Epub ahead of print]
- 2: Guo LW, Wu Q, Green B, Nolen G, Shi L, Losurdo J, Deng H, Bauer S, Fang JL, Ning B. Cytotoxicity and inhibitory effects of low-concentration triclosan on adipogenic differentiation of human mesenchymal stem cells. Toxicol Appl Pharmacol. 2012 Jul 15;262(2):117-23.
- 3: Savage JH, Matsui EC, Wood RA, Keet CA. Urinary levels of triclosan and parabens are associated with aeroallergen and food sensitization. J Allergy Clin Immunol. 2012 Jun 14. [Epub ahead of print]
- 4: Honkisz E, Zieba-Przybylska D, Wojtowicz AK. The effect of triclosan on hormone secretion and viability of human choriocarcinoma JEG-3 cells. Reprod Toxicol. 2012 Jun 4. [Epub ahead of print]
- 5: Azzouz A, Ballesteros E. Gas chromatography-mass spectrometry determination of pharmacologically active substances in urine and blood samples by use of a continuous solid-phase extraction system and microwave-assisted derivatization. J Chromatogr B Analyt Technol Biomed Life Sci. 2012 Apr 1;891-892:12-9.
- 6: Gonzalo-Lumbreras R, Sanz-Landaluze J, Guinea J, Cámara C. Miniaturized extraction methods of triclosan from aqueous and fish roe samples. Bioconcentration studies in zebrafish larvae (Danio rerio). Anal Bioanal Chem. 2012 May;403(4):927-37.
- 7: Geens T, Neels H, Covaci A. Distribution of bisphenol-A, triclosan and n-nonylphenol in human adipose tissue, liver and brain. Chemosphere. 2012 May;87(7):796-802.

Flame retardants

- 1: Chen D, Letcher RJ, Burgess NM, Champoux L, Elliott JE, Hebert CE, Martin P, Wayland M, Chip Weseloh DV, Wilson L. Flame retardants in eggs of four gull species (Laridae) from breeding sites spanning Atlantic to Pacific Canada. Environ Pollut. 2012 Sep;168:1-9.
- 2: Roberts SC, Macaulay LJ, Stapleton HM. In Vitro Metabolism of the Brominated Flame Retardants 2-Ethylhexyl-2,3,4,5-Tetrabromobenzoate (TBB) and Bis(2-ethylhexyl) 2,3,4,5-Tetrabromophthalate (TBPH) in Human and Rat Tissues. Chem Res Toxicol. 2012 May 23. [Epub ahead of print]
- 3: van der Veen I, de Boer J. Phosphorus flame retardants: Properties, production, environmental occurrence, toxicity and analysis. Chemosphere. 2012 Aug;88(10):1119-53.

- 4: Eng ML, Elliott JE, MacDougall-Shackleton SA, Letcher RJ, Williams TD. Early exposure to 2,2',4,4',5-pentabromodiphenyl ether (BDE-99) affects mating behavior of zebra finches. Toxicol Sci. 2012 May;127(1):269-76.
- 5: Norrgran J, Jones B, Lindquist NG, Bergman A. Decabromobiphenyl, polybrominated diphenyl ethers, and brominated phenolic compounds in serum of cats diagnosed with the endocrine disease feline hyperthyroidism. Arch Environ Contam Toxicol. 2012 Jul;63(1):161-8.

In vitro studier ved DTU-FOOD

Søgt i Pubmed med følgende kriterier:

"Endocrine disrupt* AND in vitro*AND expose*" og "Paraben* AND in vitro*"

Publiceret fra i perioden 2012-03-01-2012-06-31 (Marts - Juni 2012)

Efter at have fjernet gengangere, fra forrige litteraturopdateringslister, gav litteratursøgningen, med de angivne søgekriterier, tilsammen en liste med i alt 21 artikler herudover fandtes 3 yderligere artikler:

Udvalgte publikationer

The estrogenic potential of salicylate esters and their possible risks in foods and cosmetics. Zhang Z, Jia C, Hu Y, Sun L, Jiao J, Zhao L, Zhu D, Li J, Tian Y, Bai H, Li R, Hu J. **Abstract:**

Salicylate esters (SEs), a class of chemicals extensively used as flavor and fragrance additives in foods, beverages and a wide variety of consumer products, are suspected to have estrogenic activity based on chemical analysis of in silica molecular docking. We evaluated the estrogenic potentials of phenyl salicylate (PhS), benzyl salicylate (BzS), phenethyl salicylate (PES), ethyl salicylate (ES) and methyl salicylate (MS) using an in vitro human estrogen receptor α (hER α)-coactivator recruiting assay and in vivo immature rodent uterotrophic bioassays. We found that PhS, BzS and PES showed obvious in vitro hERα agonistic activities; BzS in particular exhibited a higher estrogenic activity compared to bisphenol A (BPA). The uterine weights were significantly increased in mice treated with 11.1, 33.3, 100 and 300 mg/kg/day BzS and 33.3mg/kg/day PES and rats treated with 3.7, 11.1, 33.3 and 100mg/kg/day BzS for 3 days (P<0.05). Finally, we transformed the daily intakes and the dermal exposures of SEs in the real world into estradiol equivalent concentrations (EEQs). We found that the EEQ of BzS daily intake in consumers in the U.S. and the EEQs of dermal BzS and PES exposure among high-volume users worldwide were higher than the maximum secure daily estradiol intake recommended by the U.S. Food and Drug Administration (FDA). In particular, the EEQ for dermal BzS exposure was up to 162 ng EEQ/kg, which is 3.3 times higher than the maximal acceptable daily E(2) intake recommended by the Joint FAO/WHO Expert Committee on Food Additives (JECFA).

BLTK1 Murine Leydig Cells: A Novel Steroidogenic Model for Evaluating the Effects of Reproductive and Developmental Toxicants.

Forgacs AL, Ding Q, Jaremba RG, Huhtaniemi IT, Rahman NA, Zacharewski TR.

Abstract:

Leydig cells are the primary site of androgen biosynthesis in males. Several environmental toxicants target steroidogenesis resulting in both developmental and reproductive effects including testicular dysgenesis syndrome. The aim of this study was to evaluate the effect of several structurally diverse endocrine disrupting compounds (EDCs) on steroidogenesis in a novel BLTK1 murine Leydig cell model. We demonstrate that BLTK1 cells possess a fully functional steroidogenic pathway that produces low basal levels of testosterone (T) and express all the necessary steroidogenic enzymes including Star, Cyp11a1, Cyp17a1, Hsd3b1, Hsd17b3, and Srd5a1. Recombinant human chorionic gonadotropin (rhCG) and forskolin (FSK) elicited concentration- and time-dependent induction of 3',5'-cyclic adenosine monophosphate, progesterone (P), and T, as well as the differential expression of Star, Hsd3b6, Hsd17b3, and Srd5a1 messenger RNA levels. The evaluation of several structurally diverse male reproductive toxicants including 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), atrazine, prochloraz, triclosan, monoethylhexyl phthalate

(MEHP), glyphosate, and RDX in BLTK1 cells suggests different modes of action perturb steroidogenesis. For example, prochloraz and triclosan antifungals reduced rhCG induction of T, consistent with published in vivo data but did not alter basal T levels. In contrast, atrazine and MEHP elicited modest induction of basal T but antagonized rhCG-mediated induction of T levels, whereas TCDD, glyphosate, and RDX had no effect on basal or rhCG induction of T in BLTK1 cells. These results suggest that BLTK1 cells maintain rhCG-inducible steroidogenesis and are a viable in vitro Leydig cell model to evaluate the effects of EDCs on steroidogenesis. This model can also be used to elucidate the different mechanisms underlying toxicant-mediated disruption of steroidogenesis.

Differential effects of environmental chemicals and food contaminants on adipogenesis, biomarker release and PPARy activation.

Taxvig C, Dreisig K, Boberg J, Nellemann C, Schelde AB, Pedersen D, Boergesen M, Mandrup S, Vinggaard AM.

Abstract:

Eleven environmental relevant chemicals were investigated for their ability to affect adipogenesis *in vitro*, biomarker release from adipocytes and PPAR α and γ activation. We found that butylparaben stimulated adipogenesis in 3T3-L1 adipocytes and increased release of leptin, adiponectin and resistin from the cells. Butylparaben activated PPAR γ as well, which may be a mediator of the adipogenic effect. Polychlorinated biphenyl (PCB)153 also stimulate adipogenesis and biomarker release, but did not affect PPARs. The data indicates that PPAR γ activating chemicals often stimulate adipocyte differentiation although PPAR γ activation is neither a requirement nor a guarantee for stimulation. Four out of the eleven chemicals (bisphenol A, mono-ethylhexyl phthalate, butylparaben, PCB 153) caused increased adipogenesis. The release of adipocyte-secreted hormones was sometimes but not always correlated with the effect on adipocyte differentiation. Eight chemicals were able to cause increased leptin release. These findings strengthen the hypothesis that chemicals can interfere with pathways related to obesity development.

Bruttoliste

1. ICCVAM recommends in vitro test method for endocrine-disruptors.

[No authors listed]

Altern Lab Anim. 2012 Mar;40(1):11. No abstract available.

2. <u>Paracetamol (acetaminophen)</u>, aspirin (acetylsalicylic acid) and indomethacin are anti-androgenic in the rat foetal testis.

Kristensen DM, Lesné L, Le Fol V, Desdoits-Lethimonier C, Dejucq-Rainsford N, Leffers H, Jégou B. Int J Androl. 2012 Jun;35(3):377-84. doi: 10.1111/j.1365-2605.2012.01282.x.

3. <u>Screening Estrogenic Activities of Chemicals or Mixtures In Vivo Using Transgenic (cyp19a1b-GFP)</u> Zebrafish Embryos.

Brion F, Le Page Y, Piccini B, Cardoso O, Tong SK, Chung BC, Kah O. PLoS One. 2012;7(5):e36069. Epub 2012 May 7.

4. Expression and DNA methylation changes in human breast epithelial cells after bisphenol A exposure.

Fernandez SV, Huang Y, Snider KE, Zhou Y, Pogash TJ, Russo J. Int J Oncol. 2012 Jul;41(1):369-77. doi: 10.3892/ijo.2012.1444. Epub 2012 Apr 20.

5. <u>Changes in concentrations of hydrophilic organic contaminants and of **endocrine-disrupting** potential downstream of small communities located adjacent to headwaters.</u>

Jarosova B, Blaha L, Vrana B, Randak T, Grabic R, Giesy JP, Hilscherova K. Environ Int. 2012 Sep;45:22-31. Epub 2012 May 8.

6. <u>Serum and follicular fluid concentrations of polybrominated diphenyl ethers and **in-vitro** fertilization outcome.</u>

Johnson PI, Altshul L, Cramer DW, Missmer SA, Hauser R, Meeker JD. Environ Int. 2012 Sep;45:9-14. Epub 2012 May 7.

7. A testing strategy for the identification of mammalian, systemic **endocrine disruptors** with particular focus on steroids.

Kolle SN, Ramirez T, Kamp HG, Buesen R, Flick B, Strauss V, van Ravenzwaay B. Regul Toxicol Pharmacol. 2012 Jul;63(2):259-78. Epub 2012 Apr 24.

8. <u>Induced growth of BG-1 ovarian cancer cells by 17β-estradiol or various **endocrine disrupting** chemicals was reversed by resveratrol via downregulation of cell cycle progression.</u>

Kang NH, Hwang KA, Kim TH, Hyun SH, Jeung EB, Choi KC. Mol Med Report. 2012 Jul;6(1):151-6. doi: 10.3892/mmr.2012.887. Epub 2012 Apr 23.

9. <u>Human endometrial cell coculture reduces the **endocrine disruptor** toxicity on mouse embryo development.</u>

Song HY, Lee MS, Lee YS, Lee HH. J Occup Med Toxicol. 2012 Apr 30;7(1):7. [Epub ahead of print]

10. Long-term effects of a binary mixture of perfluorooctane sulfonate (PFOS) and bisphenol A (BPA) in zebrafish (Danio rerio).

Keiter S, Baumann L, Färber H, Holbech H, Skutlarek D, Engwall M, Braunbeck T. Aquat Toxicol. 2012 Aug 15;118-119:116-29. Epub 2012 Apr 11.

11. Quantification of steroids and **endocrine disrupting** chemicals in rat ovaries by LC-MS/MS for reproductive toxicology assessment.

Quignot N, Tournier M, Pouech C, Cren-Olivé C, Barouki R, Lemazurier E. Anal Bioanal Chem. 2012 Jun;403(6):1629-40. Epub 2012 Apr 22.

12. Bisphenol AF may cause testosterone reduction by directly affecting testis function in adult male rats.

Feng Y, Yin J, Jiao Z, Shi J, Li M, Shao B. Toxicol Lett. 2012 Jun 1;211(2):201-9. Epub 2012 Apr 6.

13. <u>GPR30</u>, the non-classical membrane G protein related estrogen receptor, is overexpressed in human seminoma and promotes seminoma cell proliferation.

Chevalier N, Vega A, Bouskine A, Siddeek B, Michiels JF, Chevallier D, Fénichel P. PLoS One. 2012;7(4):e34672. Epub 2012 Apr 4.

14. <u>Differential Estrogenic Actions of Endocrine-Disrupting Chemicals Bisphenol A, Bisphenol AF and Zearalenone through Estrogen Receptor α and β in Vitro.</u>

Li Y, Burns KA, Arao Y, Luh CJ, Korach KS. Environ Health Perspect. 2012 Apr 11. [Epub ahead of print]

15. Evaluation of the Daphnia magna reproduction test for detecting endocrine disruptors.

Dang Z, Cheng Y, Chen HM, Cui Y, Yin HH, Traas T, Montforts M, Vermeire T. Chemosphere. 2012 Jul;88(4):514-23. Epub 2012 Apr 1.

16. <u>BLTK1 Murine Leydig Cells: A Novel Steroidogenic Model for Evaluating the Effects of Reproductive and Developmental Toxicants.</u>

Forgacs AL, Ding Q, Jaremba RG, Huhtaniemi IT, Rahman NA, Zacharewski TR. Toxicol Sci. 2012 Jun;127(2):391-402. Epub 2012 Mar 29.

17. Exposure of alveolar macrophages to polybrominated diphenyl ethers suppresses the release of proinflammatory products in vitro.

Hennigar SR, Myers JL, Tagliaferro AR. Exp Biol Med (Maywood). 2012 Apr 1;237(4):429-34. Epub 2012 Mar 27.

18. The estrogenic potential of salicylate esters and their possible risks in foods and cosmetics.

Zhang Z, Jia C, Hu Y, Sun L, Jiao J, Zhao L, Zhu D, Li J, Tian Y, Bai H, Li R, Hu J. Toxicol Lett. 2012 Mar 7;209(2):146-53. Epub 2011 Dec 16.

19. Endocrine-active chemicals in mammary cancer causation and prevention.

Jenkins S, Betancourt AM, Wang J, Lamartiniere CA. J Steroid Biochem Mol Biol. 2012 Apr;129(3-5):191-200. Epub 2011 Jun 23. Review.

20. The influence of volatile solvents on transport across model membranes and human skin.

Oliveira G, Hadgraft J, Lane ME. Int J Pharm. 2012 May 24. [Epub ahead of print] 21. <u>Effect of Direction (Epidermis-To-Dermis and Dermis-To-Epidermis) on the Permeation of Several</u> Chemical Compounds through Full-Thickness Skin and Stripped Skin.

Oshizaka T, Todo H, Sugibayashi K. Pharm Res. 2012 May 24. [Epub ahead of print]

Herudover er der yderligere 3 artikel, som ikke blev fanget af de valgte søgekriterier:

Differential effects of environmental chemicals and food contaminants on adipogenesis, biomarker release and PPARy activation.

Taxvig C, Dreisig K, Boberg J, Nellemann C, Schelde AB, Pedersen D, Boergesen M, Mandrup S, Vinggaard AM.

Mol Cell Endocrinol. 2012 Apr 14. [Epub ahead of print]

QSAR model for human pregnane X receptor (PXR) binding: Screening of environmental chemicals and correlations with genotoxicity, endocrine disruption and teratogenicity.

Dybdahl M, Nikolov NG, Wedebye EB, Jónsdóttir SO, Niemelä JR.

Toxicol Appl Pharmacol. 2012 May 22. [Epub ahead of print]

PMID: 22627063

QSAR Model for Androgen Receptor Antagonism - Data from CHO Cell Reporter Gene Assays

Gunde Egeskov Jensen, Nikolai Georgiev Nikolov, Karin Dreisig, Anne Marie Vinggaard and Jay Russel Niemelä

J Steroids Horm Sci 2012, S:2http://dx.doi.org/10.4172/2157-7536.S2-006

In Vivo studier ved DTU - FOOD

Søgning er udført på PubMed og dækker perioden 1/4 2012 – 20/6 2012

(april - juni 2012)

<u>Følgende søgeprofil er benyttet:</u> "(endocrine disrupt*) AND (utero*) AND (rat OR mice OR mammal*)" samt "(endocrine disrupt*) AND (rat OR mice OR mammal*)". Efter at have fjernet gengangere fra dem vi havde med på den forrige litteraturopdateringsliste, gav litteratursøgningen tilsammen en liste med i alt 31 (+ yderligere 3) artikler (Bruttolisten):

Udvalgte publikationer:

Adverse effects on sexual development in rat offspring after low dose exposure to a mixture of endocrine disrupting pesticides.

Hass U, Boberg J, Christiansen S, Jacobsen PR, Vinggaard AM, Taxvig C, Poulsen ME, Herrmann SS, Jensen BH, Petersen A, Clemmensen LH, Axelstad M.

The present study investigated whether a mixture of low doses of five environmentally relevant endocrine disrupting pesticides, epoxiconazole, mancozeb, prochloraz, tebuconazole and procymidone, would cause adverse developmental toxicity effects in rats. In rat dams, a significant increase in gestation length was seen, while in male offspring increased nipple retention and increased incidence and severity of genital malformations were observed. Severe mixture effects on gestation length, nipple retention and genital malformations were seen at dose levels where the individual pesticides caused no or smaller effects when given alone. Generally, the mixture effect predictions based on dose-additivity were in good agreement with the observed effects. The results indicate that there is a need for modification of risk assessment procedures for pesticides, in order to take account of the mixture effects and cumulative intake, because of the potentially serious impact of mixed exposure on development and reproduction in humans.

Reprod Toxicol. 2012 Jun 4. [Epub ahead of print]

Persistent developmental toxicity in rat offspring after low dose exposure to a mixture of endocrine disrupting pesticides.

Jacobsen PR, Axelstad M, Boberg J, Isling LK, Christiansen S, Mandrup KR, Berthelsen LO, Vinggaard AM, Hass U.

There is growing concern of permanent damage to the endocrine and nervous systems after developmental exposure to endocrine disrupting chemicals. In this study the permanent reproductive and neurobehavioral effects of combined exposure to five endocrine disrupting pesticides, epoxiconazole, mancozeb, prochloraz, tebuconazole and procymidone, were examined. Pregnant and lactating rat dams were dosed with a mixture of the five pesticides at three different doses, or with the individual pesticides at one of two doses. Adverse effects were observed in young

and adult male offspring from the group exposed to the highest dose of the mixture. These included reduced prostate and epididymis weights, increased testes weights, altered prostate histopathology, increased density of mammary glands, reduced sperm counts, and decreased spatial learning. As no significant effects were seen following single compound exposure at the doses included in the highest mixture dose, these results indicate cumulative adverse effects of the pesticide mixture.

Gestational Exposure to Bisphenol A Produces Transgenerational Changes in Behaviors and Gene Expression.

Wolstenholme JT, Edwards M, Shetty SR, Gatewood JD, Taylor JA, Rissman EF, Connelly JJ.

Endocrinology. 2012 Jun 15. [Epub ahead of print]

Bisphenol A (BPA) is a plasticizer and an endocrine-disrupting chemical. It is present in a variety of products used daily including food containers, paper, and dental sealants and is now widely detected in human urine and blood. Exposure to BPA during development may affect brain organization and behavior, perhaps as a consequence of its actions as a steroid hormone agonist/antagonist and/or an epigenetic modifier. Here we show that BPA produces transgenerational alterations in genes and behavior. Female mice received phytoestrogen-free chow with or without BPA before mating and throughout gestation. Plasma levels of BPA in supplemented dams were in a range similar to those measured in humans. Juveniles in the first generation exposed to BPA in utero displayed fewer social interactions as compared with control mice, whereas in later generations (F(2) and F(4)), the effect of BPA was to increase these social interactions. Brains from embryos (embryonic d 18.5) exposed to BPA had lower gene transcript levels for several estrogen receptors, oxytocin, and vasopressin as compared with controls; decreased vasopressin mRNA persisted into the F(4) generation, at which time oxytocin was also reduced but only in males. Thus, exposure to a low dose of BPA, only during gestation, has immediate and long-lasting, transgenerational effects on mRNA in brain and social behaviors. Heritable effects of an endocrine-disrupting chemical have implications for complex neurological diseases and highlight the importance of considering gene

Perinatal ethinyl oestradiol alters mammary gland development in male and female Wistar rats.

Mandrup KR, Hass U, Christiansen S, Boberg J.

Int J Androl. 2012 Jun;35(3):385-96. doi: 10.1111/j.1365-2605.2012.01258.x. Epub 2012 Mar 19.

Increased attention is being paid to human mammary gland development because of concerns for environmental influences on puberty onset and breast cancer development. Studies in rodents have showed a variety of changes in the mammary glands after perinatal exposure to endocrine disrupting chemicals, indicating progressed development of mammary glands when exposed to oestrogens early in life. However, laboratories use different parameters to evaluate the development of mammary glands, making studies difficult to compare. Moreover, studies of whole mounts in Wistar rats are lacking. In the present study, Wistar rats were exposed to 0, 5, 15 or 50 $\,\mu \text{g/kg}$ of ethinyl oestradiol per day during gestation and lactation. A wide range of morphological parameters were evaluated in whole mounts of

mammary glands from male and female offspring PD21-22. This study showed that in both male and female pre-pubertal Wistar rats, mammary gland development was accelerated after perinatal oestrogen exposure with increase in size, density and number of terminal end buds (TEBs). In female rats, the most sensitive parameters were the distance to the fifth gland, the relative growth towards the lymph node and the overall density. The sensitive endpoints in male rats were TEB numbers, both in the whole gland and in the zone C, the overall- and the highest density. The overall density was sensitive in both male and female rats and was considered a good representative of both branching and budding of the gland. The number of TEBs in zone C was representative of the number of TEBs in the whole gland. Further studies in older Wistar rats and with weak oestrogenic compounds could be performed to validate mammary gland examination as an endpoint in reproductive toxicity studies and to examine how early life environmental exposures may alter mammary gland development, disrupt lactation and alter susceptibility to breast cancer.

A critique of the European Commission Document, "State of the Art Assessment of Endocrine Disrupters".

Rhomberg LR, Goodman JE, Foster WG, Borgert CJ, Van Der Kraak G. Crit Rev Toxicol. 2012 Jul;42(6):465-73. Epub 2012 May 26. (Kun abstract)

Abstract

In this commentary, we critique a recently finalized document titled "State of the Art Assessment of Endocrine Disrupters" (SOA Assessment). The SOA Assessment was commissioned by the European Union Directorate-General for the Environment to provide a basis for developing scientific criteria for identifying endocrine disruptors and reviewing and possibly revising the European Community Strategy on Endocrine Disrupters. In our view, the SOA Assessment takes an anecdotal approach rather than attempting a comprehensive assessment of the state of the art or synthesis of current knowledge. To do the latter, the document would have had to (i) distinguish between apparent associations of outcomes with exposure and the inference of an endocrinedisruption (ED) basis for those outcomes; (ii) constitute a complete and unbiased survey of new literature since 2002 (when the WHO/IPCS document, "Global Assessment of the State-of-the-Science of Endocrine Disruptors" was published); (iii) consider strengths and weaknesses and issues in interpretation of the cited literature; (iv) follow a weight-of-evidence methodology to evaluate evidence of ED; (v) document the evidence for its conclusions or the reasoning behind them; and (vi) present the evidence for or reasoning behind why conclusions that differ from those drawn in the 2002 WHO/IPCS document need to be changed. In its present form, the SOA Assessment fails to provide a balanced and critical assessment or synthesis of literature relevant to ED. We urge further evidence-based evaluations to develop the needed scientific basis to support future policy decisions.

Bruttoliste

1. The **endocrine disruptor** Diethylstilbestrol induces adipocyte differentiation and promotes obesity in **mice**.

Hao CJ, Cheng XJ, Xia HF, Ma X.

Toxicol Appl Pharmacol. 2012 Jun 15. [Epub ahead of print]

2. Chemoprotective effects of kolaviron on ethylene glycol monoethyl ether-induced pituitary-thyroid axis toxicity in male rats.

Adedara IA, Farombi EO.

Andrologia. 2012 Jun 19. doi: 10.1111/j.1439-0272.2012.01321.x. [Epub ahead of print]

3. <u>Gestational Exposure to Bisphenol A Produces Transgenerational Changes in Behaviors and Gene Expression.</u>

Wolstenholme JT, Edwards M, Shetty SR, Gatewood JD, Taylor JA, Rissman EF, Connelly JJ. Endocrinology. 2012 Jun 15. [Epub ahead of print]

4. <u>Thyroid hormone receptors: The challenge of elucidating isotype-specific functions and cell-specific response.</u>

Flamant F, Gauthier K.

Biochim Biophys Acta. 2012 Jun 12. [Epub ahead of print]

5. Of mice and men (and rats): phthalate-induced fetal testis endocrine disruption is species-dependent.

Johnson K, Heger N, Boekelheide K.

Toxicol Sci. 2012 Jun 14. [Epub ahead of print]

6. Effects of commercial formulations of deltamethrin and/or thiacloprid on thyroid hormone levels in **rat** serum.

Sekeroglu V, Sekeroglu ZA, Demirhan ES.

Toxicol Ind Health. 2012 Jun 7. [Epub ahead of print]

7. <u>Persistent developmental toxicity in **rat** offspring after low dose exposure to a mixture of **endocrine disrupting** pesticides.</u>

Jacobsen PR, Axelstad M, Boberg J, Isling LK, Christiansen S, Mandrup KR, Berthelsen LO, Vinggaard AM, Hass U.

Reprod Toxicol. 2012 Jun 4. [Epub ahead of print]

8. Phthalate Exposure Changes the Metabolic Profile of Cardiac Muscle Cells.

Posnack NG, Swift LM, Kay MW, Lee NH, Sarvazyan N.

Environ Health Perspect. 2012 Jun 6. [Epub ahead of print]

9. Adverse effects on sexual development in **rat** offspring after low dose exposure to a mixture of **endocrine disrupting** pesticides.

Hass U, Boberg J, Christiansen S, Jacobsen PR, Vinggaard AM, Taxvig C, Poulsen ME, Herrmann SS, Jensen BH, Petersen A, Clemmensen LH, Axelstad M.

Reprod Toxicol. 2012 May 29. [Epub ahead of print]

10. <u>Paracetamol</u> (acetaminophen), aspirin (acetylsalicylic acid) and indomethacin are antiandrogenic in the **rat** foetal testis.

Kristensen DM, Lesné L, Le Fol V, Desdoits-Lethimonier C, Dejucq-Rainsford N, Leffers H, Jégou B.

Int J Androl. 2012 Jun;35(3):377-84. doi: 10.1111/j.1365-2605.2012.01282.x.

11. A testing strategy for the identification of **mammalian**, systemic **endocrine disruptors** with particular focus on steroids.

Kolle SN, Ramirez T, Kamp HG, Buesen R, Flick B, Strauss V, van Ravenzwaay B. Regul Toxicol Pharmacol. 2012 Jul;63(2):259-78. Epub 2012 Apr 24.

12. <u>Acetaldehyde at a Low Concentration Synergistically Exacerbates Allergic Airway</u> <u>Inflammation as an **Endocrine-Disrupting** Chemical and as a Volatile Organic Compound.</u>

Kawano T, Matsuse H, Fukahori S, Tsuchida T, Nishino T, Fukushima C, Kohno S. Respiration. 2012 Apr 25. [Epub ahead of print]

13. Quantification of steroids and **endocrine disrupting** chemicals in **rat** ovaries by LC-MS/MS for reproductive toxicology assessment.

Quignot N, Tournier M, Pouech C, Cren-Olivé C, Barouki R, Lemazurier E. Anal Bioanal Chem. 2012 Jun;403(6):1629-40. Epub 2012 Apr 22.

14. <u>Position paper: The membrane estrogen receptor GPER - Clues and questions.</u>

Barton M.

Steroids. 2012 Apr 10. [Epub ahead of print]

15. Accelerated Mammary Tumor Onset in a HER2/Neu Mouse Model Exposed to DDT Metabolites Locally Delivered to the Mammary Gland.

Johnson NA, Ho A, Cline JM, Hughes CL, Foster WG, Davis VL.

Environ Health Perspect. 2012 Apr 18. [Epub ahead of print]

16. <u>Human Fetal Testis Xenografts Are Resistant To Phthalate-Induced **Endocrine Disruption**.</u>

Heger NE, Hall SJ, Sandrof MA, McDonnell EV, Hensley JB, McDowell EN, Martin KA, Gaido KW, Johnson KJ, Boekelheide K.

Environ Health Perspect. 2012 Apr 17. [Epub ahead of print]

17. The metabonomics of combined dietary exposure to phthalates and polychlorinated biphenyls in mice.

Zhang J, Yan L, Tian M, Huang Q, Peng S, Dong S, Shen H.

J Pharm Biomed Anal. 2012 Jul;66:287-97. Epub 2012 Apr 3.

18. Coexpression of nuclear receptors and histone methylation modifying genes in the testis: implications for **endocrine disruptor** modes of action.

Anderson AM, Carter KW, Anderson D, Wise MJ.

PLoS One. 2012;7(4):e34158. Epub 2012 Apr 4.

19. High dose bisphenol A impairs hippocampal neurogenesis in female **mice** across generations.

Jang YJ, Park HR, Kim TH, Yang WJ, Lee JJ, Choi SY, Oh SB, Lee E, Park JH, Kim HP, Kim HS, Lee J.

Toxicology. 2012 Jun 14;296(1-3):73-82. Epub 2012 Apr 3.

20. <u>Identification of iopanoic acid as substrate of type 1 deiodinase by a novel nonradioactive</u> iodide-release assay.

Renko K, Hoefig CS, Hiller F, Schomburg L, Köhrle J.

Endocrinology. 2012 May;153(5):2506-13. Epub 2012 Mar 20.

21. Strain specific induction of pyometra and differences in immune responsiveness in **mice** exposed to 17α -ethinyl estradiol or the **endocrine disrupting** chemical bisphenol A.

Kendziorski JA, Kendig EL, Gear RB, Belcher SM.

Reprod Toxicol. 2012 Aug;34(1):22-30. Epub 2012 Mar 10.

22. <u>Maternal bisphenol A oral dosing relates to the acceleration of neurogenesis in the developing</u> neocortex of mouse fetuses.

Komada M, Asai Y, Morii M, Matsuki M, Sato M, Nagao T.

Toxicology. 2012 May 16;295(1-3):31-8. Epub 2012 Mar 7.

23. The novel **endocrine disruptor** tolylfluanid impairs insulin signaling in primary rodent and human adipocytes through a reduction in insulin receptor substrate-1 levels.

Sargis RM, Neel BA, Brock CO, Lin Y, Hickey AT, Carlton DA, Brady MJ.

Biochim Biophys Acta. 2012 Jun;1822(6):952-60. Epub 2012 Feb 23.

24. <u>Mixtures of **endocrine disrupting** contaminants modelled on human high end exposures: an exploratory study in rats.</u>

Christiansen S, Kortenkamp A, Axelstad M, Boberg J, Scholze M, Jacobsen PR, Faust M, Lichtensteiger W, Schlumpf M, Burdorf A, Hass U.

Int J Androl. 2012 Jun;35(3):303-16. doi: 10.1111/j.1365-2605.2011.01242.x. Epub 2012 Feb 28.

25. Perinatal programming of adult **rat** germ cell death after exposure to xenoestrogens: role of microRNA miR-29 family in the down-regulation of DNA methyltransferases and Mcl-1.

Meunier L, Siddeek B, Vega A, Lakhdari N, Inoubli L, Bellon RP, Lemaire G, Mauduit C, Benahmed M.

Endocrinology. 2012 Apr;153(4):1936-47. Epub 2012 Feb 14.

26. <u>Characterization of **endocrine-disrupting** chemicals based on hormonal balance disruption in male and female adult rats.</u>

Quignot N, Arnaud M, Robidel F, Lecomte A, Tournier M, Cren-Olivé C, Barouki R, Lemazurier E.

Reprod Toxicol. 2012 Jun;33(3):339-52. Epub 2012 Jan 21.

27. The **endocrine disruptors** dibutyl phthalate (DBP) and diethylstilbestrol (DES) influence Leydig cell regeneration following ethane dimethane sulphonate treatment of adult male rats. Heng K, Anand-Ivell R, Teerds K, Ivell R.

Int J Androl. 2012 Jun;35(3):353-63. doi: 10.1111/j.1365-2605.2011.01231.x. Epub 2011 Dec 13.

28. <u>Maternal thimerosal exposure results in aberrant cerebellar oxidative stress, thyroid hormone metabolism, and motor behavior in **rat** pups; sex- and strain-dependent effects.</u>

Sulkowski ZL, Chen T, Midha S, Zavacki AM, Sajdel-Sulkowska EM.

Cerebellum. 2012 Jun;11(2):575-86.

29. Comparative developmental biology of the uterus: insights into mechanisms and developmental disruption.

Spencer TE, Dunlap KA, Filant J.

Mol Cell Endocrinol. 2012 May 6;354(1-2):34-53. Epub 2011 Oct 8.

30. The effects of di(2-ethylhexyl)phthalate exposure and selenium nutrition on sertoli cell vimentin structure and germ-cell apoptosis in **rat** testis.

Erkekoglu P, Zeybek ND, Giray B, Asan E, Hincal F.

Arch Environ Contam Toxicol. 2012 Apr;62(3):539-47. Epub 2011 Oct 16.

31. <u>Permethrin exposure during puberty has the potential to enantioselectively induce reproductive</u> toxicity in **mice**.

Jin Y, Liu J, Wang L, Chen R, Zhou C, Yang Y, Liu W, Fu Z.

Environ Int. 2012 Jul;42:144-51. Epub 2011 Jul 13.

Endocrinology. 2012 Jun 15. [Epub ahead of print]

Herudover er der yderligere 3 artikler, som ikke blev fanget af de valgte søgekriterier:

Perinatal ethinyl oestradiol alters mammary gland development in male and female Wistar rats.

Mandrup KR, Hass U, Christiansen S, Boberg J.

Int J Androl. 2012 Jun;35(3):385-96. doi: 10.1111/j.1365-2605.2012.01258.x. Epub 2012 Mar 19.

(udvalgt)

<u>Perinatal exposure to xenoestrogens impairs mammary gland differentiation and modifies milk composition in Wistar rats.</u>

Kass L, Altamirano GA, Bosquiazzo VL, Lugue EH, Muñoz-de-Toro M.

Reprod Toxicol. 2012 Jun;33(3):390-400. Epub 2012 Feb 13.

A critique of the European Commission Document, "State of the Art Assessment of **Endocrine** Disrupters".

Rhomberg LR, Goodman JE, Foster WG, Borgert CJ, Van Der Kraak G. Crit Rev Toxicol. 2012 Jul;42(6):465-73. Epub 2012 May 26.(abstract)

Wildlife studier ved Biologisk Institut, Syddansk Universitet (SDU)

Søgningen er udført på Web of Science og dækker perioden 27/3 2012 - 26/6 2012.

Søgeprofilen kombinerer: Endocrine disrupt* og Fish*

Amphibia*
Bird* OR Avia*
Invertebrat*
Mollus*
Gastropod*
Insect*
Crustacea*
Echinoderm*

Ursus

Reptil* OR Alligator

Whal* OR seal* OR dolphin*

Fra bruttolisten (længere nede i dokumentet) er udvalgt tre artikler til medtagelse af abstract og yderligere kommentarer.

Kriterierne for udvælgelsen af publikationer til kommentering er, at de bidrager til ny viden omkring effekter af og virkningsmekanismer for hormonforstyrrende stoffer i 'wildlife' og/eller at de repræsenterer vigtig viden, som vurderes at have særlig interesse for Miljøstyrelsen bl.a. i forbindelse med styrelsens fokus på udvikling af testmetoder. Desuden kommenteres artikler, der omhandler 'nye' stoffer og miljøfaktorer, der har vist sig hormonforstyrrende; specielt hvis disse har relevans for danske forhold. Endelig medtages, efter Miljøstyrelsens ønske, artikler omhandlende parabener.

Udvalgte publikationer

Marie,B., Huet,H., Marie,A., Djediat,C., Puiseux-Dao,S., Catherine,A., Trinchet,I., and Edery,M., 2012. Effects of a toxic cyanobacterial bloom (Planktothrix agardhii) on fish: Insights from histopathological and quantitative proteomic assessments following the oral exposure of medaka fish (Oryzias latipes). Aquatic Toxicology 114, 39-48.

Abstract: Cyanobacterial toxic blooms often occur in freshwater lakes and constitute a potential health risk to human populations, as well as to fish and other aquatic organisms. Microcystin-LR (the cyanotoxin most commonly detected in the freshwater environment) is a potent hepatotoxin, deregulating the kinase pathway by inhibiting phosphatases 1 and 2A. Although toxicological effects have been clearly linked to the in vitro exposure of fish to purified microcystins, cyanotoxins are produced by the cyanobacteria together with numerous other potentially toxic molecules, and their overall and specific implications for the health of fish have still not been clearly established and remain puzzlingly difficult to assess.

The medaka fish (Oryzias latipes) was chosen as an in vitro model for studying the effects of a cyanobacterial bloom on liver protein contents using a gel free quantitative approach, iTRAQ in addition to pathology examinations on histological preparations. Fish were gavaged with 5 mu L cyanobacterial extracts (Planktothrix agardhii) from a natural bloom (La Grande Paroisse, France) containing 2.5 mu g equiv. MC-LR. 2 h after exposure, the fish were sacrificed and livers were collected for analysis. Histological observations indicate that hepatocytes present glycogen storage loss, and cellular damages, together with immunological localization of MCs. Using a proteomic approach, 304 proteins were identified in the fish

livers, 147 of them with a high degree of identification confidence. Fifteen of these proteins were statistically significantly different from those of controls (gavaged with water only). Overall, these protein regulation discrepancies clearly indicate that oxidative stress and lipid regulation had occurred in the livers of the exposed medaka fish. In contrast to previous pure microcystin-LR gavage experiments, marked induction of vitellogenin 1 protein was observed for the first time with a cyanobacterial extract. This finding was confirmed by ELISA quantification of vitellogenin liver content, suggesting that the Planktothrix bloom extract had induced the occurrence of an endocrine-disrupting effect.

Vosges, M., Kah, O., Hinfray, N., Chadili, E., Le Page, Y., Combarnous, Y., Porcher, J.M., and Brion, F., 2012. 17 alpha-Ethinylestradiol and nonylphenol affect the development of forebrain GnRH neurons through an estrogen receptors-dependent pathway. Reproductive Toxicology 33, 198-204.

Abstract: There is growing evidence that neuroendocrine circuits controlling development and reproduction are targeted by EDCs. We have previously demonstrated that low concentrations of 17alpha-ethinylestradiol (EE2) disrupt the development of forebrain GnRH neurons during zebrafish development. The objectives of the present study were to determine whether the weak estrogenic compound, nonylphenol (NP), could elicit similar effects to EE2 and to what extent the estrogen receptors are involved in mediating these effects. Using immunohistochemistry, we confirmed that EE2 exposure induces an increase in the number of GnRH-ir neurons and we demonstrated that NP is able to produce similar effects in a concentration-dependent manner. The effects of both NP and EE2 were shown to be blocked by the estrogen receptors (ERs) antagonist ICI 182-780, demonstrating the involvement of functional ERs in mediating their effects. Altogether, these results highlight the need to consider neuroendocrine networks as critical endpoints in the field of endocrine disruption.

DeQuattro, Z.A., Peissig, E.J., Antkiewicz, D.S., Lundgren, E.J., Hedman, C.J., Hemming, J.D., and Barry, T.P., 2012. Effects of progesterone on reproduction and embryonic development in the fathead minnow (Pimephales promelas). Environmental Toxicology and Chemistry 31, 851-856.

Abstract: High concentrations (375 ng/L) of the steroid hormone progesterone (P4) were measured in snowmelt runoff associated with large livestock-feeding operations in Wisconsin. To gain insight into the potential endocrine-disrupting effects of P4 in fish, experiments were conducted to evaluate the effects of short-term exposure to environmentally relevant concentrations of P4 on reproduction and embryonic development in the fathead minnow (Pimephales promelas). For the reproduction assay, groups of reproductively mature fish were exposed for 21 d to nominal concentrations of 0, 10, 100, and 1,000 ng/L P4 in a flow-through system, and various key reproductive endpoints (e.g., egg number, fertilization success) were quantified throughout the exposure period. The embryonic development assay consisted of incubating fathead minnow eggs in static culture to quantify the effects of P4 on early development and hatching success. Progesterone caused dose-dependent decreases in fecundity and fertility and significantly reduced gonadosomatic index and vitellogenin gene expression in females. There were no effects of P4 on early embryonic development or hatching success. Progesterone may be a significant endocrine-disrupting chemical in fish.

Bruttoliste

- 1. Ahmad,L., Khan,A., and Khan,M.Z., 2012. Pyrethroid-Induced Reproductive Toxico-Pathology in Non-Target Species. Pakistan Veterinary Journal 32, 1-9.
- Anderson, P.D., Johnson, A.C., Pfeiffer, D., Caldwell, D.J., Hannah, R., Mastrocco, F., Sumpter, J.P., and Williams, R.J., 2012. Endocrine disruption due to estrogens derived from humans predicted to be low in the majority of U.S. surface waters. Environmental Toxicology and Chemistry 31, 1407-1415.
- 3. Bachelot,M., Li,Z., Munaron,D., Le Gall,P., Casellas,C., Fenet,H., and Gomez,E., 2012. Organic UV filter concentrations in marine mussels from French coastal regions. Science of the Total Environment 420, 273-279.
- Baynes, A., Green, C., Nicol, E., Beresford, N., Kanda, R., Henshaw, A., Churchley, J., and Jobling, S., 2012. Additional Treatment of Wastewater Reduces Endocrine Disruption in Wild Fish-A Comparative Study of Tertiary and Advanced Treatments. Environmental Science & Technology 46, 5565-5573.
- 5. Bedoux,G., Roig,B., Thomas,O., Dupont,V., and Le Bot,B., 2012. Occurrence and toxicity of antimicrobial triclosan and by-products in the environment. Environmental Science and Pollution Research 19, 1044-1065.
- Berg, C., 2012. An amphibian model for studies of developmental reproductive toxicity. Methods in molecular biology (Clifton, N. J.) 889, 73-83.
- Bin-Dohaish, E.A., 2012. The effects of 4-nonylphenol contamination on livers of Tilapia fish (Oreochromus spilurs) in Jeddah. Biological Research 45, 15-20.
- 8. Boggs,A.S., Lowers,R.H., Hamlin,H.J., Mccoy,J.A., and Guillette,L.J., 2012. The role of plasma iodide and endocrine disrupting chemicals in predictive adaptive responses of Alligator mississippiensis. Integrative and Comparative Biology 52, E16.
- 9. Brander,S.M., Cole,B.J., and Cherr,G.N., 2012. An approach to detecting estrogenic endocrine disruption via choriogenin expression in an estuarine model fish species. Ecotoxicology 21, 1272-1280.
- 10. Brink,K., van Vuren,J.J., and Bornman,R., 2012. The lack of endocrine disrupting effects in catfish (Clarias gariepinus) from a DDT sprayed area. Ecotoxicology and Environmental Safety 79, 256-263.
- Brion, F., Le Page, Y., Piccini, B., Cardoso, O., Tong, S.K., Chung, B.C., and Kah, O., 2012. Screening Estrogenic Activities of Chemicals or Mixtures In Vivo Using Transgenic (cyp19a1b-GFP) Zebrafish Embryos. PloS one 7, e36069.
- 12. Brix,R., Lopez-Doval,J., Ricart,M., Guasch,H., Lopez de Alda,M., Munoz,I., Orendt,C., Romani,A.M., Sabater,S., and Barcelo,D., 2012. Establishing potential links between the presence of alkylphenolic compounds and the benthic community in a European river basin. Environmental Science and Pollution Research 19, 934-945.
- 13. Bulloch, D.N., Lavado, R., Forsgren, K.L., Beni, S., Schlenk, D., and Larive, C.K., 2012. Analytical and Biological Characterization of Halogenated Gemfibrozil Produced through Chlorination of Wastewater. Environmental Science & Technology 46, 5583-5589.

- 14. Cabas,I., Liarte,S., Garcia-Alcazar,A., Meseguer,J., Mulero,V., and Garcia-Ayala,A., 2012. 17 alpha-Ethynylestradiol alters the immune response of the teleost gilthead seabream (Sparus aurata L.) both in vivo and in vitro. Developmental and Comparative Immunology 36, 547-556.
- 15. Caldwell, D.J., Mastrocco, F., Anderson, P.D., Lange, R., and Sumpter, J.P., 2012. Predicted-no-effect concentrations for the steroid estrogens estrone, 17 beta-estradiol, estriol, and 17 alphaethinylestradiol. Environmental Toxicology and Chemistry 31, 1396-1406.
- Cao,M., Duan,J., Cheng,N., Zhong,X., Wang,Z., Hu,W., and Zhao,H., 2012. Sexually dimorphic and ontogenetic expression of dmrt1, cyp19a1a and cyp19a1b in Gobiocypris rarus. Comparative biochemistry and physiology. Part A, Molecular & integrative physiology 162, 303-309.
- 17. Chakrabarty,S., Rajakumar,A., Raghuveer,K., Sridevi,P., Mohanachary,A., Prathibha,Y., Bashyam,L., Dutta-Gupta,A., and Senthilkumaran,B., 2012. Endosulfan and flutamide, alone and in combination, target ovarian growth in juvenile catfish, Clarias batrachus. Comparative Biochemistry and Physiology C-Toxicology & Pharmacology 155, 491-497.
- 18. Chen,Q., Yu,L., Yang,L., and Zhou,B., 2012. Bioconcentration and metabolism of decabromodiphenyl ether (BDE-209) result in thyroid endocrine disruption in zebrafish larvae. Aquatic Toxicology 110, 141-148.
- Cho,E.M., Lee,H.S., Moon,J.S., Kim,I.S., Sim,S., and Ohta,A., 2012. Organotin Compounds Act as Inhibitor of Transcriptional Activation with Human Estrogen Receptor. Journal of Microbiology and Biotechnology 22, 378-384.
- 20. Crago, J. and Klaper, R., 2012. A mixture of an environmentally realistic concentration of a phthalate and herbicide reduces testosterone in male fathead minnow (Pimephales promelas) through a novel mechanism of action. Aquatic Toxicology 110, 74-83.
- 21. Cubero-Leon, E., Minier, C., Rotchell, J.M., and Hill, E.M., 2012. Metabolomic analysis of sex specific metabolites in gonads of the mussel, Mytilus edulis. Comparative Biochemistry and Physiology D-Genomics & Proteomics 7, 212-219.
- 22. DeQuattro,Z.A., Peissig,E.J., Antkiewicz,D.S., Lundgren,E.J., Hedman,C.J., Hemming,J.D., and Barry,T.P., 2012. Effects of progesterone on reproduction and embryonic development in the fathead minnow (Pimephales promelas). Environmental Toxicology and Chemistry 31, 851-856.
- 23. Devillers, J., Doucet, J., Doucet-Panaye, A., Decourtye, A., and Aupinel, P., 2012. Linear and non-linear QSAR modelling of juvenile hormone esterase inhibitors. Sar and Qsar in Environmental Research 23, 357-369.
- 24. Diehl, J., Johnson, S.E., Xia, K., West, A., and Tomanek, L., 2012. The distribution of 4-nonylphenol in marine organisms of North American Pacific Coast estuaries. Chemosphere 87, 490-497.
- 25. Filby,A.L., Paull,G.C., Searle,F., Ortiz-Zarragoitia,M., and Tyler,C.R., 2012. Environmental Estrogen-Induced Alterations of Male Aggression and Dominance Hierarchies in Fish: A Mechanistic Analysis. Environmental Science & Technology 46, 3472-3479.
- 26. Ford,A.T., 2012. Intersexuality in Crustacea: An environmental issue? Aquatic Toxicology 108, 125-129.
- 27. Friesen, C.N., Aubin-Horth, N., and Chapman, L.J., 2012. The effect of hypoxia on sex hormones in an African cichlid Pseudocrenilabrus multicolor victoriae. Comparative Biochemistry and Physiology A-Molecular & Integrative Physiology 162, 22-30.

- 28. Gattullo, C., Baehrs, H., Steinberg, C.E., and Loffredo, E., 2012. Removal of bisphenol A by the freshwater green alga Monoraphidium braunii and the role of natural organic matter. Science of the Total Environment 416, 501-506.
- 29. Gonzalez-Jauregui, M., Valdespino, C., Salame-Mendez, A., Aguirre-Leon, G., and Rendon-vonOsten, J., 2012. Persistent Organic Contaminants and Steroid Hormones Levels in Morelet's Crocodiles From the Southern Gulf of Mexico. Archives of Environmental Contamination and Toxicology 62, 445-454.
- 30. Guyon,N.F., Roggio,M.A., Ame,M.V., Hued,A.C., Valdes,M.E., Giojalas,L.C., Wunderlin,D.A., and Bistoni,M.A., 2012. Impairments in aromatase expression, reproductive behavior, and sperm quality of male fish exposed to 17beta-estradiol. Environmental Toxicology and Chemistry 31, 935-940.
- 31. Hallgren, P., Sorita, Z., Berglund, O., and Persson, A., 2012. Effects of 17 alpha-ethinylestradiol on individual life-history parameters and estimated population growth rates of the freshwater gastropods Radix balthica and Bithynia tentaculata. Ecotoxicology 21, 803-810.
- 32. Hawliczek,A., Nota,B., Cenijn,P., Kamstra,J., Pieterse,B., Winter,R., Winkens,K., Hollert,H., Segner,H., and Legler,J., 2012. Developmental toxicity and endocrine disrupting potency of 4-azapyrene, benzo[b]fluorene and retene in the zebrafish Danio rerio. Reproductive Toxicology 33, 213-223.
- 33. Hoffmann,F. and Kloas,W., 2012. Estrogens can disrupt amphibian mating behavior. PloS one 7, e32097.
- 34. Hoffmann,F. and Kloas,W., 2012. The synthetic progestogen, Levonorgestrel, but not natural progesterone, affects male mate calling behavior of Xenopus laevis. General and Comparative Endocrinology 176, 385-390.
- 35. Hogan,N.S., Gallant,M.J., and van den Heuvel,M.R., 2012. Exposure to the pesticide linuron affects androgen-dependent gene expression in the three-spined stickleback (Gasterosteus aculeatus). Environmental Toxicology and Chemistry 31, 1391-1395.
- 36. Hussain,R., Mahmood,F., Khan,A., Javed,M.T., Rehan,S., and Mehdi,T., 2012. Cellular and biochemical effects induced by atrazine on blood of male Japanese quail (Coturnix japonica). Pesticide Biochemistry and Physiology 103, 38-42.
- 37. Jin,S., Yang,F., Liao,T., Hui,Y., Wen,S., and Xu,Y., 2012. Enhanced effects by mixtures of three estrogenic compounds at environmentally relevant levels on development of Chinese rare minnow (Gobiocypris rarus). Environmental Toxicology and Pharmacology 33, 277-283.
- 38. Jordan, J., Zare, A., Jackson, L.J., Habibi, H.R., and Weljie, A.M., 2012. Environmental Contaminant Mixtures at Ambient Concentrations Invoke a Metabolic Stress Response in Goldfish Not Predicted from Exposure to Individual Compounds Alone. Journal of Proteome Research 11, 1133-1143.
- 39. Kavanagh,R.J., Frank,R.A., Burnison,B.K., Young,R.F., Fedorak,P.M., Solomon,K.R., and Van Der Kraak,G., 2012. Fathead minnow (Pimephales promelas) reproduction is impaired when exposed to a naphthenic acid extract. Aquatic Toxicology 116, 34-42.
- 40. Keiter,S., Baumann,L., Farber,H., Holbech,H., Skutlarek,D., Engwall,M., and Braunbeck,T., 2012. Long-term effects of a binary mixture of perfluorooctane sulfonate (PFOS) and bisphenol A (BPA) in zebrafish (Danio rerio). Aquatic toxicology (Amsterdam, Netherlands) 118-119, 116-129.

- 41. Kraugerud, M., Doughty, R.W., Lyche, J.L., Berg, V., Tremoen, N.H., Alestrom, P., Aleksandersen, M., and Ropstad, E., 2012. Natural mixtures of persistent organic pollutants (POPs) suppress ovarian follicle development, liver vitellogenin immunostaining and hepatocyte proliferation in female zebrafish (Danio rerio). Aquatic Toxicology 116, 16-23.
- 42. Kugathas, S., Williams, R.J., and Sumpter, J.P., 2012. Prediction of environmental concentrations of glucocorticoids: The River Thames, UK, as an example. Environment International 40, 15-23.
- 43. Liu, J., Wang, R., Huang, B., Lin, C., Zhou, J., and Pan, X., 2012. Biological effects and bioaccumulation of steroidal and phenolic endocrine disrupting chemicals in high-back crucian carp exposed to wastewater treatment plant effluents. Environmental Pollution 162, 325-331.
- 44. Liu,X., Ji,K., and Choi,K., 2012. Endocrine disruption potentials of organophosphate flame retardants and related mechanisms in H295R and MVLN cell lines and in zebrafish. Aquatic Toxicology 114, 173-181.
- 45. Marie,B., Huet,H., Marie,A., Djediat,C., Puiseux-Dao,S., Catherine,A., Trinchet,I., and Edery,M., 2012. Effects of a toxic cyanobacterial bloom (Planktothrix agardhii) on fish: Insights from histopathological and quantitative proteomic assessments following the oral exposure of medaka fish (Oryzias latipes). Aquatic Toxicology 114, 39-48.
- 46. Mcgee, C., Brougham, C., Roche, J., and Fogarty, A., 2012. First Report of Intersex Roach Residing in Irish Rivers Downstream of Several Wastewater Treatment Plants. Biology and Environment-Proceedings of the Royal Irish Academy 112B, 69-77.
- 47. Miller, L.M., Bartell, S.E., and Schoenfuss, H.L., 2012. Assessing the Effects of Historical Exposure to Endocrine-Active Compounds on Reproductive Health and Genetic Diversity in Walleye, a Native Apex Predator, in a Large Riverine System. Archives of Environmental Contamination and Toxicology 62, 657-671.
- 48. Miyata,K. and Ose,K., 2012. Thyroid Hormone-disrupting Effects and the Amphibian Metamorphosis Assay. Journal of Toxicologic Pathology 25, 1-9.
- 49. Moore,B.C., Roark,A.M., Kohno,S., Hamlin,H.J., and Guillette,L.J., 2012. Gene-environment interactions: The potential role of contaminants in somatic growth and the development of the reproductive system of the American alligator. Molecular and Cellular Endocrinology 354, 111-120.
- 50. Nordstad, T., Moe, B., Bustnes, J.O., Bech, C., Chastel, O., Goutte, A., Sagerup, K., Trouve, C., Herzke, D., and Gabrielsen, G.W., 2012. Relationships between POPs and baseline corticosterone levels in black-legged kittiwakes (Rissa tridactyla) across their breeding cycle. Environmental Pollution 164, 219-226.
- 51. Overturf, M., Overturf, C., Baxter, D., Hala, D., Constantine, L., Venables, B., and Huggett, D., 2012. Early Life-Stage Toxicity of Eight Pharmaceuticals to the Fathead Minnow, Pimephales promelas. Archives of Environmental Contamination and Toxicology 62, 455-464.
- 52. Panter, G.H., Glennon, Y.C., Robinson, J., Hargreaves, A., and Murray-Smith, R., 2012. Effects of the anti-androgen, bicalutamide, in a reduced life-cycle study with the fathead minnow (Pimephales promelas). Aquatic Toxicology 114, 31-38.
- 53. Pelayo,S., Oliveira,E., Thienpont,B., Babin,P.J., Raldua,D., Andre,M., and Pina,B., 2012.

 Triiodothyronine-induced changes in the zebrafish transcriptome during the eleutheroembryonic stage: Implications for bisphenol A developmental toxicity. Aquatic Toxicology 110, 114-122.

- 54. Perez,M.R., Fernandino,J.I., Carriquiriborde,P., and Somoza,G.M., 2012. Feminization and altered gonadal gene expression profile by ethinylestradiol exposure to pejerrey, Odontesthes bonariensis, a South American teleost fish. Environmental Toxicology and Chemistry 31, 941-946.
- 55. Quesada-Garcia, A., Valdehita, A., Luisa Fernandez-Cruz, M., Leal, E., Sanchez, E., Martin-Belinchon, M., Cerda-Reverter, J.M., and Navas, J.M., 2012. Assessment of estrogenic and thyrogenic activities in fish feeds. Aquaculture 338, 172-180.
- 56. Rajakumar,A., Singh,R., Chakrabarty,S., Murugananthkumar,R., Laldinsangi,C., Prathibha,Y., Sudhakumari,C., Dutta-Gupta,A., and Senthilkumaran,B., 2012. Endosulfan and flutamide impair testicular development in the juvenile Asian catfish, Clarias batrachus. Aquatic Toxicology 110, 123-132.
- 57. Rocha,M.J., Ribeiro,M., Ribeiro,C., Couto,C., Cruzeiro,C., and Rocha,E., 2012. Endocrine disruptors in the Leca River and nearby Porto Coast (NW Portugal): presence of estrogenic compounds and hypoxic conditions. Toxicological and Environmental Chemistry 94, 262-274.
- 58. Rodil,R., Benito Quintana,J., Concha-Grana,E., Lopez-Mahia,P., Muniategui-Lorenzo,S., and Prada-Rodriguez,D., 2012. Emerging pollutants in sewage, surface and drinking water in Galicia (NW Spain). Chemosphere 86, 1040-1049.
- 59. Rodriguez, J., Slembrouck, J., Subagja, J., and Legendre, M., 2012. Intersex in a cultured specimen of the Indo-Malay catfish, Pangasius nasutus (Bleeker, 1863). Journal of Applied Ichthyology 28, 284-286.
- 60. Salierno, J.D., Pollack, S.J., Van Veld, P.A., Ottinger, M.A., Yonkos, L.T., and Kane, A.S., 2012. Steroid Hormones and Anthropogenic Contaminants in Poultry Litter Leachate. Water Air and Soil Pollution 223, 2181-2187.
- 61. Sanchez-Argueello,P., Aparicio,N., and Fernandez,C., 2012. Linking embryo toxicity with genotoxic responses in the freshwater snail Physa acuta: Single exposure to benzo(a)pyrene, fluoxetine, bisphenol A, vinclozolin and exposure to binary mixtures with benzo(a)pyrene. Ecotoxicology and Environmental Safety 80, 152-160.
- 62. Sant'Anna,B.S., Dos Santos,D.M., Rodrigues De Marchi,M.R., Zara,F.J., and Turra,A., 2012. Effects of tributyltin exposure in hermit crabs: Clibanarius vittatus as a model. Environmental Toxicology and Chemistry 31, 632-638.
- 63. Saravanan, M., Devi, K.U., Malarvizhi, A., and Ramesh, M., 2012. Effects of Ibuprofen on hematological, biochemical and enzymological parameters of blood in an Indian major carp, Cirrhinus mrigala. Environmental Toxicology and Pharmacology 34, 14-22.
- 64. Sayed,A.E.-D., Mahmoud,U.M., and Mekkawy,I.A., 2012. Reproductive biomarkers to identify endocrine disruption in Clarias gariepinus exposed to 4-nonylphenol. Ecotoxicology and Environmental Safety 78, 310-319.
- 65. Schmidt, F., Schnurr, S., Wolf, R., and Braunbeck, T., 2012. Effects of the anti-thyroidal compound potassium-perchlorate on the thyroid system of the zebrafish. Aquatic Toxicology 109, 47-58.
- 66. Searcy,B.T., Beckstrom-Sternberg,S.M., Beckstrom-Sternberg,J.S., Stafford,P., Schwendiman,A.L., Soto-Pena,J., Owen,M.C., Ramirez,C., Phillips,J., Veldhoen,N., Helbing,C.C., and Propper,C.R., 2012. Thyroid hormone-dependent development in Xenopus laevis: A sensitive screen of thyroid hormone signaling disruption by municipal wastewater treatment plant effluent. General and Comparative Endocrinology 176, 481-492.

- 67. Shelley,L.K., Ross,P.S., and Kennedy,C.J., 2012. The effects of an in vitro exposure to 17 betaestradiol and nonylphenol on rainbow trout (Oncorhynchus mykiss) peripheral blood leukocytes. Comparative Biochemistry and Physiology C-Toxicology & Pharmacology 155, 440-446.
- 68. Shenoy,K., 2012. Environmentally Realistic Exposure to the Herbicide Atrazine Alters Some Sexually Selected Traits in Male Guppies. PloS one 7.
- 69. Sonne, C., Bustnes, J.O., Herzke, D., Jaspers, V.L., Covaci, A., Eulaers, I., Halley, D.J., Moum, T., Ballesteros, M., Eens, M., Ims, R.A., Hanssen, S.A., Erikstad, K.E., Johnsen, T.V., Riget, F.F., Jensen, A.L., and Kjelgaard-Hansen, M., 2012. Blood plasma clinical-chemical parameters as biomarker endpoints for organohalogen contaminant exposure in Norwegian raptor nestlings. Ecotoxicology and Environmental Safety 80, 76-83.
- 70. Spachmo,B. and Arukwe,A., 2012. Endocrine and developmental effects in Atlantic salmon (Salmo salar) exposed to perfluorooctane sulfonic or perfluorooctane carboxylic acids. Aquatic Toxicology 108, 112-124.
- 71. Tumburu,L., Shepard,E.F., Strand,A.E., and Browdy,C.L., 2012. Effects of endosulfan exposure and Taura Syndrome Virus infection on the survival and molting of the marine penaeid shrimp, Litopenaeus vannamei. Chemosphere 86, 912-918.
- 72. Urbatzka,R., Rocha,E., Reis,B., Cruzeiro,C., Monteiro,R.A.F., and Rocha,M.J., 2012. Effects of ethinylestradiol and of an environmentally relevant mixture of xenoestrogens on steroidogenic gene expression and specific transcription factors in zebrafish. Environmental Pollution 164, 28-35.
- 73. Van den Heuvel, M.R., Hogan, N.S., Roloson, S.D., and Van der Kraak, G.J., 2012. Reproductive development of yellow perch (Perca flavescens) exposed to oil sands-affected waters. Environmental Toxicology and Chemistry 31, 654-662.
- 74. Vosges,M., Kah,O., Hinfray,N., Chadili,E., Le Page,Y., Combarnous,Y., Porcher,J.M., and Brion,F., 2012. 17 alpha-Ethinylestradiol and nonylphenol affect the development of forebrain GnRH neurons through an estrogen receptors-dependent pathway. Reproductive Toxicology 33, 198-204.
- 75. Wang,H.P., Wu,T.T., Qin,F., Wang,L.H., and Wang,Z.Z., 2012. Molecular cloning of Foxl2 gene and the effects of endocrine-disrupting chemicals on its mRNA level in rare minnow, Gobiocypris rarus. Fish Physiology and Biochemistry 38, 653-664.
- 76. Williams, R.J., Churchley, J.H., Kanda, R., and Johnson, A.C., 2012. Comparing predicted against measured steroid estrogen concentrations and the associated risk in two United Kingdom river catchments. Environmental Toxicology and Chemistry 31, 892-898.
- 77. Yan,W., Zhou,Y.X., Yang,J., Li,S.Q., Hu,D.J., Wang,J.H., Chen,J., and Li,G.Y., 2012. Waterborne exposure to microcystin-LR alters thyroid hormone levels and gene transcription in the hypothalamic-pituitary-thyroid axis in zebrafish larvae. Chemosphere 87, 1301-1307.
- Zhang,H., Pan,L., and Zhang,L., 2012. Molecular cloning and characterization of estrogen receptor gene in the Scallop Chlamys farreri: Expression profiles in response to endocrine disrupting chemicals. Comparative Biochemistry and Physiology C-Toxicology & Pharmacology 156, 51-57
- 79. Zucchi, S., Castiglioni, S., and Fent, K., 2012. Progestins and Antiprogestins Affect Gene Expression in Early Development in Zebrafish (Danio rerio) at Environmental Concentrations. Environmental Science & Technology 46, 5183-5192